Оптические передатчики и приемники ВОСП выполняются в виде модулей, в состав которых входят источники и приемники оптического излучения и электронные схемы обработки электрических сигналов.
К источникам оптического излученияпредъявляются следующие требования:
длина волны излучения должна совпадать с одним из минимумов спектральных потерь оптических волокон;
конструкция источника должна обеспечивать достаточно высокую мощность выходного излучения и эффективный ввод его в оптическое волокно;
источник должен иметь высокую надежность и большой срок службы;
габаритные размеры, масса и потребляемая мощность должны быть минимальными;
простота технологии должна обеспечивать невысокую стоимость и высокую воспроизводимость характеристик.
Известны три класса источников оптического излучения для ВОСП:
- пленарные полупроводниковые;
- волоконные;
- объемные микрооптические (микролазеры).
Все они в той или иной мере удовлетворяют изложенным выше требованиям, однако только пленарные полупроводниковые источники светоизлучающие (СИД) и лазерные диоды (ЛД) — широко используются в реальных системах. Они работают в диапазоне волн 0,8... 1,6 мкм, который характеризуется минимальными потерями в ОВ, и позволяют вводить в волокно достаточно большую мощность (0,05... ...2 мВт)..
В СИД оптическое излучение происходит в результате спонтанной эмиссии, когда к области р—л-перехода в полупроводниковом материале с прямыми переходами приложено положительное смещение. Спонтанное оптическое излучение возникает при переходе любого электрона с одного энергетического уровня на другой. Частота излучения / определяется разностью энергетических уровней т. е. шириной запрещенной энергетической зоны где —постоянная Планка; с — скорость света в вакууме.
Основными характеристиками источников излучения наряду с шириной спектра излучения являются ватт-амперная характеристика, максимальное значение частоты модуляции, срок службы и надежность.
Зависимость мощности излучения от тока инжекции (накачки) показана на рис. 8.15. Особенностью этих характеристик является практически линейная зависимость Это позволяет использовать аналоговые системы передачи для модуляции оптического излучения.
На рис. 8.16 приводится спектральное распределение излучения СИД. Как правило, линия излучения для СИД с поверхностным излучением имеет примерно гауссовскую форму с шириной до 0,04 мкм при =0,85 мкм, а для СИД торцевого типа 0,09 мкм при =1,3 мкм.
Полупроводниковые лазерные диоды являются когерентными источниками света. В основе их работы лежит спонтанное излучение полупроводника, охваченное объемным резонатором. Уменьшение плотности тока и улучшение других характеристик достигнуто за счет использования многослойных полупроводников-гетероструктур с односторонним (ОГС) и двусторонним (ДГС) ограничением, в которых удается снизить величину до 1 ... 2
Если увеличить ток накачки в ЛД с ОГС или ДГС с широким контактом по всей поверхности, то генерация сначала возникает в малой области шириной 3... 5 мкм. По мере увеличения тока «загораются» все больше таких областей, каждая из которых является как бы самостоятельно генерирующей. Это приводит к увеличению шума, расходимости и нестабильности излучения.
На практике желательно иметь один канал генерации. Этого можно добиться ограничением активной области узкой полоской вдоль резонатора. Такие лазерные диоды называются лазерами с полосковой геометрией. В них уменьшается до 500 , излучающую поверхность можно изготовить до размеров, обеспечивающих эффективный ввод излучения в оптическое волокно с малой числовой апертурой NA, и повысить стабильность излучения.
К числу основных характеристик лазерных диодов, определяющих возможность их использования в системах связи и передачи информации, относятся: мощность излучения и ее зависимость от тока накачки, диаграмма направленности излучения, спектр излучения и срок службы.
Передающий оптический модуль (ПОМ) конструктивно состоит из оптической головки и электронной схемы, основным назначением которой является модуляция излучаемого света. В оптической головке с СИД размещаются диод и модулятор, а в головке с ЛД — лазер, модулятор, фотодиод обратной связи и электронная схема, с помощью которой стабилизируется режим работы лазера. Одна из основных задач, которую необходимо решать при разработке ПОМ, — стабилизация выходной мощности полупроводниковых лазеров.