русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Диагонализируемые преобразования


Дата добавления: 2014-10-02; просмотров: 978; Нарушение авторских прав


Линейное преобразование называется диагонализируемым, если существует базис, в котором матрица линейного преобразования имеет диагональный вид. Заметим, что базис, в котором матрица линейного преобразования имеет диагональный вид, образован собственными векторами. Верно и обратное. В базисе из собственных векторов матрица линейного преобразования имеет диагональный вид. Не каждое линейное преобразование диагонализируемо. Например, линейное преобразование, заданное матрицей не диагонализируемо.

Теорема 7.3. Собственные векторы, отвечающие различным собственным значениям, линейно независимы.

Доказательство. Пусть - линейно независимая система собственных векторов, соответствующих собственному значению , где i=1,…,s. Покажем линейную независимость системы векторов индукцией по s. При s=1 утверждение очевидно. Пусть оно верно для s-1. Покажем его справедливость для s. Допустим, система - линейно зависима. Тогда найдутся коэффициенты не все равные нулю, что . Из этого равенства выводим или . По предположению индукции все коэффициенты в этом равенстве равны 0, и, значит при i<s. Но тогда система - линейно зависима, что противоречит условиям теоремы. К полученному противоречию привело допущение о линейной зависимости системы векторов , значит, эта система линейно независима, что и требовалось доказать.

Рассмотрим вопрос о количестве линейно независимых собственных векторов, соответствующих собственному числу .

Геометрической кратностью собственного числа называется дефект преобразования , а алгебраической кратностью называется кратность корня в характеристическом многочлене.

Теорема 7.4. Геометрическая кратность не превосходит его алгебраической кратности.

Доказательство. Пусть геометрическая кратность равна k. Дополним базис ядра преобразования до базиса всего пространства . Матрица линейного преобразования в этом базисе имеет вид и характеристический многочлен равен . Таким образом, алгебраическая кратность не меньше геометрической кратности, что и требовалось доказать.



Теорема 7.5 Линейное преобразование линейного пространства V над числовым полем P диагонализируемо тогда и только тогда, когда характеристический многочлен раскладывается над полем P на линейные множители и алгебраическая кратность каждого корня совпадает с его геометрической кратностью.

Доказательство очевидно.



<== предыдущая лекция | следующая лекция ==>
Коэффициенты характеристического уравнения. След матрицы. | Теорема Шура


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.091 сек.