русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Собственные векторы и собственные числа. Характеристическое уравнение.


Дата добавления: 2014-10-02; просмотров: 763; Нарушение авторских прав


Базис одномерного инвариантного подпространства называется собственным вектором. Другими словами, ненулевой вектор x называется собственным, если . Число называется собственным. Запишем это равенство в координатах , или . Последнее равенство можно рассматривать как квадратную систему линейных уравнений с n неизвестными. По правилу Крамера, если , то система имеет единственное нулевое решение. Следовательно, собственные числа являются корнями уравнения . Данное уравнение называется характеристическим. Обратно, если корень характеристического уравнения, то система имеет ненулевое решение, и значит, является собственным числом. Тем самым доказана теорема.

Теорема 7.1. Корнями характеристического уравнения являются только собственные числа. Все собственные числа являются корнями характеристического уравнения.

Коэффициенты характеристического уравнения не зависят от выбора базиса. Действительно, матрицы линейного преобразования в разных базисах связаны уравнением , откуда .

Собственные векторы для собственного числа принадлежат ядру линейного преобразования . Подпространство называется корневым подпространством, соответствующим собственному числу .

Приведем простые факты.

Следствие 7.1. Линейное преобразование линейного пространства над полем комплексных чисел имеет собственный вектор.

Доказательство. Над полем комплексных чисел характеристический многочлен имеет хотя бы один корень, а, значит, линейное преобразование имеет собственный вектор.

Следствие 7.2. Линейное преобразование линейного пространства над полем вещественных чисел имеет инвариантное подпространство размерности не выше 2.

Доказательство. Пусть - линейное преобразование пространства V над полем R. Если характеристический многочлен имеет вещественный корень, то утверждение леммы очевидно. На множестве определим операцию сложения и умножения на комплексное число . Множество относительно введенных операций сложения векторов и умножения на скаляр образует линейное пространство над C. Вектор x из V можно рассматривать как вектор из пространства , записанный в виде x+i0. Базис пространства V является базисом пространства , и, значит, размерности пространств V и совпадают. В пространстве рассмотрим линейное преобразование . Пусть - базис V. Тогда - базис и . Пусть - комплексное собственное число, а - соответствующий собственный вектор линейного преобразования . Тогда , и, значит, , . Линейная оболочка векторов x,y образует двумерное инвариантное подпространство.





<== предыдущая лекция | следующая лекция ==>
Алгебра линейных преобразований. | Коэффициенты характеристического уравнения. След матрицы.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.217 сек.