русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Эквивалентность матриц


Дата добавления: 2014-10-02; просмотров: 1269; Нарушение авторских прав


Матрицы A и B называются эквивалентными, если найдутся невырожденные матрицы Q и T, что A=QBT.

Теорема 6.1. Если матрицы эквивалентны, то их ранги равны.

Доказательство. Поскольку ранг произведения не превосходит ранги сомножителей, то . Так как , то . Объединяя два неравенства, получаем требуемое утверждение.

Теорема 6.2. Элементарными преобразованиями со строками и столбцами матрицу A можно привести к блочному виду , где - единичная матрица порядка k, а 0 – нулевая матрица соответствующих размеров.

Доказательство. Приведем алгоритм приведения матрицы A к указанному виду. Номера столбцов будут указываться в квадратных скобках, а номера строк – в круглых скобках.

1. Положим r=1.

2. Если то перейдем на шаг 4, иначе перейдем на шаг 3.

3. Сделаем преобразования со строками , где i=r+1,…,m, и со столбцами , где j=r+1,…,n, и . Увеличим r на 1 и вернемся на шаг 2.

4. Если , при i=r+1,…,m, j=r+1,…,n, то конец. В противном случае найдем i,j>r, что . Переставим строки и столбцы , вернемся на шаг 2.

Очевидно, что алгоритмом будет строиться последовательность эквивалентных матриц, последняя из которых имеет требуемый вид.

Теорема 6.3. Матрицы A и B одинаковых размеров эквивалентны тогда и только тогда, когда их ранги равны.

Доказательство. Если матрицы эквивалентны, то их ранги равны (Теорема 6.1). Пусть ранги матриц равны. Тогда найдутся невырожденные матрицы, что , где r=rgA=rgB (Теорема 6.2). Следовательно, , и матрицы A и B – эквивалентны.

Результаты данного пункта позволяют находить простейший вид матрицы линейного оператора и базисы пространств, в которых матрица линейного оператора имеет этот простейший вид.



<== предыдущая лекция | следующая лекция ==>
Алгебра линейных операторов. | Ранг, дефект линейного оператора.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.171 сек.