русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Псевдорешения. Метод наименьших квадратов.


Дата добавления: 2014-10-02; просмотров: 3358; Нарушение авторских прав


Рассмотрим несовместную систему линейных уравнений Ax=b. Псевдорешением системы линейных уравнений называется вектор x, на котором достигается минимум нормы невязки |Ax-b|. Задача построения псевдорешения возникает при подборе параметров физических процессов. Левая часть системы уравнений определяется конкретным видом зависимости от параметров, а правая – конкретными измерениями. Поскольку каждое измерение производится с некоторой точностью, то обычно их проводят с избытком. В результате получается несовместная система линейных уравнений, а задача подбора параметров сводится к построению псевдорешения. Сам способ перехода от задачи решения системы линейных уравнений к нахождению минимума длины невязки называется метод наименьших квадратов. Такое название связано с тем, что .

Обозначим через W линейную оболочку столбцов матрицы A. Задача построения псевдорешения эквивалентна задаче определения расстояния от b до W,а точнее к определению проекции b на W. Коэффициенты разложения проекции по столбцам матрицы A являются решениями системы уравнений . Тем самым, задача построения псевдорешения свелась к решению системы линейных уравнений.

Если исходная система имела решение, то оно является также псевдорешением. Необходимым и достаточным условием единственности псевдорешения является условие линейной независимости столбцов матрицы A.



<== предыдущая лекция | следующая лекция ==>
Расстояния. Псевдорешения. Нормальные решения. Нормальные псевдорешения. | Нормальное решение


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.004 сек.