русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Расстояния. Псевдорешения. Нормальные решения. Нормальные псевдорешения.


Дата добавления: 2014-10-02; просмотров: 4321; Нарушение авторских прав


Расстоянием между множествами X и Y называется .

Рассмотрим задачу нахождения расстояния от точки x до подпространства W. В начале рассмотрим случай, когда подпространство задано в виде линейной оболочки системы векторов.

Теорема 2.5. Расстояние от точки до подпространства достигается на перпендикуляре, опущенном из точки x на подпространство.

Доказательство. Представим . Расстояние от точки x до подпространства W равно . Векторы и ортогональны друг другу, и по неравенству Бесселя , причем равенство достигается только в случае . Тем самым установлено , что и требовалось.

Пусть и система векторов линейно независимая. Расстояние от точки x до подпространства W можно найти как отношение объема k+1-мерного параллелепипеда натянутого на векторы к объему k-мерного параллелепипеда натянутого на векторы . Таким образом, справедлива формула . К сожалению, эта формула не позволяет находить проекцию и ортогональную составляющую вектора. Для нахождения проекции можно поступать следующим образом. Представим и , а затем умножим скалярно на векторы вектор x. Получим систему линейных уравнений . Коэффициенты при неизвестных образуют матрицу Грама, определитель которой не равен нулю. Следовательно, система имеет единственное решение. Решив эту систему, найдем проекцию вектора x, а затем и ортогональную составляющую.

Рассмотрим случай, когда линейное подпространство задано системой однородных линейных уравнений Ax=0. Для простоты проведения рассуждений будем считать, что строки матрицы A линейно независимы. В ортонормированном базисе, коэффициенты при неизвестных в уравнении являются координатами вектора из ортогонального дополнения (см. п.2.4). Таким образом, по системе линейных уравнений можно найти базис ортогонального дополнения к пространству W. Обозначим базис через . Тогда представим и , а затем умножим скалярно на векторы вектор x. Получим систему линейных уравнений . Коэффициенты при неизвестных образуют матрицу Грама, определитель которой не равен нулю. Следовательно, система имеет единственное решение. Решив эту систему, найдем ортогональную составляющую вектора x, а затем и проекцию.



Рассмотрим теперь задачу нахождения расстояния от точки x до линейного многообразия M. Эта задача легко сводится к аналогичной задаче построения расстояния от точки до подпространства. Действительно, пусть M=z+W, где z – произвольная точка из M, а W – подпространство. Тогда , то есть задача свелась к определению расстояния от точки x-z до подпространства W.

Линейное многообразие, заданное как множество решений одного линейного уравнения ax=b называется гиперплоскостью. Рассмотрим задачу отыскания расстояния от точки y до гиперплоскости ax=b. Перпендикуляр, опущенный из y на гиперплоскость равен и . Отсюда находим неизвестный параметр , а затем и расстояние .

Рассмотрим задачу определения расстояния между двумя линейными многообразиями и . Расстояние между ними равно , то есть задача свелась к нахождению расстояния от точки y-z до подпространства . Заметим, что расстояние между линейными многообразиями достигается на общем перпендикуляре.



<== предыдущая лекция | следующая лекция ==>
Геометрический смысл определителя матрицы Грама. Неравенство Адамара. | Псевдорешения. Метод наименьших квадратов.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.007 сек.