Закон больших чисел позволяет найти пределы, к которым стремятся вероятностные количественные оценки случайных величин при росте их числа. Законом больших чисел называют несколько математических теорем, каждая из которых в определенных условиях устанавливает факт приближения средних характеристик, полученных на опыте, к некоторым определенным постоянным. Основными из них являются: теорема Чебышева и теорема Бернулли.
Теорема Чебышева. При достаточно большом числе независимых опытов среднее арифметическое из опытных данных сходится по вероятности к математическому ожиданию случайной величины.
Пусть a – истинное значение измеряемой величины, - среднее арифметическое ряда измерений, - максимальное значение квадрата отклонения в произведенных измерениях, n – число измерений. Теорема Чебышева утверждает, что
. (5.1)
Для доказательства теоремы обратим внимание на то, что математическое ожидание любого измерения , где a – неизвестное истинное значение измеряемой величины. Далее, так как
, то
, т.е. математическое ожидание среднего значения случайной величины также равно истинному значению a. Дисперсия величины
. Так как можно написать, что
.
Теперь после замены x на и на a легко получаем теорему Чебышева.
Из теоремы следует, что при любых конечных и будет справедливо предельное соотношение
или эквивалентное ему соотношение
.
Таким образом, теорема Чебышева доказывает, что среднее арифметическое опытных данных (измерений) мало отличается от истинного значения при большом числе испытаний. Однако входящее в неравенство значение указывает на то, что увеличением числа измерений нельзя полностью компенсировать ошибки измерительного инструмента.
Выводы теоремы можно распространить и на другие моменты распределения. Например, для дисперсии получаем приближенную формулу, пригодную для практических вычислений:
,
где вместо a, согласно теореме Чебышева, можно пользоваться :
.
Неравенство и теорема Чебышева для практических задач могут использоваться в тех случаях, когда известна дисперсия, очевидно, она должна быть конечной величиной.