Пример 6. Идеальный двухатомный газ, содержащий количество вещества n=1 моль, находится под давлением p1 =-250 кПа и занимает объем V1=10 л. Сначала газ изохорно нагревают до температуры T=400 К. Далее, изотермически расширяя, доводят его до первоначального давления. После этого путем изобарного сжатия возвращают газ в начальное состояние. Определить термический КПД h цикла.
Решение. Для наглядности построим сначала график цикла, который состоит из изохоры, изотермы и изобары. В координатах P, V этот цикл имеет вид, представленный на рис. 9.
Характерные точки цикла обозначим 1, 2, 3. Термический КПД любого цикла определяется выражением
h=(Q1-Q2)/Q1, или h=1-Q2/Q1 (1),
где Q1 - количество теплоты, полученное газом за цикл от нагревателя; Q2 - ко-личество теплоты, отданное газом за цикл охладителю.
Заметим, что разность количеств теплоты Q1 и Q2 равна работе А, совершаемой газом за цикл. Эта работа на графике в координатах P, V (рис.) изображается площадью цикла.
Рабочее вещество (газ) получает количество теплоты Q1 на двух участках: Q1-2 на участке 1-2 (изохорный процесс) и Q2-3 на участке 2-3 (изотермический процесс). Таким образом,
Q1=Q1-2+Q2-3.
Количество теплоты, полученное газом при изохорном процессе, равно
Q1-2=cvmn(T2-T1),
где cvm- молярная теплоемкость газа при постоянном объеме;
n - количество вещества. Температуру T1 начального состояния газа найдем, воспользовавшись уравнением Клапейрона-Менделеева:
T1=p1V1/(nR).
Подставив числовые значения и произведя вычисления, получим
T1=2500×10-3/(1×8,31)= ЗООК.
Количество теплоты, полученное газом при изотермическом процессе, равно
где V2 - объем, занимаемый газом при температуре T2 и давлении P1(точка 3 на графике).
На участке 3-1 газ отдает количество теплоты Q3, равное
Q2=Q3-1=cpmn(T2-T1),
где cpm - молярная теплоемкость газа при изобарном процессе. Подставим найденные значения Q1 и Q2 в формулу (1):
В полученном выражении заменим отношение объемов V2/V1, согласно закону Гей-Люссака, отношением температур T2/T1 и выразим cvm и cpm через число степеней свободы молекулы(cvm=iR/2, cpm=(1+2)R/2). Тогда после сокращений получим
Подставив значения i, T1, T2 и R и произведя вычисления, найдем
Пример7.Кислород занимает объем v1=1 м3 и находится под давлением р1=200 кПа. Газ нагрели сначала при постоянном давлении до объема V=3 м2, а затем при постоянном объеме до давления p= 500 кПа. Построить график процесса и найти: 1) изменение DU внутренней энергии газа; 2) совершенную им работу A; 3) количество теплоты Q, переданное газу.
Рис. 10.
Решение. Построим график процесса (рис.). На графике точками 1, 2, 3 обозначены состояния газа, характеризуемые параметрами (p1, V1, Т1,), (p2,V2, T2), (p2, V2, T3).
1. Изменение внутренней энергии газа при переходе его из состояния 1 в состояние 3 выражается формулой
DU=cvmDT.
где сv - удельная теплоемкость газа при постоянном объеме: m - масса газа; DТ — разность температур, соответствующих конечному 3 и начальному 1 состояниям газа, т. е.DT=T3-T1. Так как
где m — молярная масса газа, то
Температуры T1 и T3 выразим из уравнения Менделеева - Клапейрона:
С учетом этого получаем:
Подставим сюда значения величин (учтем, что для кислорода, как двухатомного газа, i= 5) и произведем вычисления:
DU=3,25 МДж .
2. Полная работа, совершаемая газом, равна
А =A1+A2;
где А1 - работа на участке 1-2; А2 - работа на участке 2-3.
На участке 1-2 давление постоянно (р=const). Работа в этом случае выражается формулой
A1=p1(V2-V1).
На участке 2-3 объем газа не изменяется и, следовательно, работа газа на этом участке равна нулю (А2= 0). Таким образом,
A=A1=р×(V2-V1).
Подставив в эту формулу значения физических величин, произведем вычисления:
А=0,4 МДж .
3. Согласно первому началу термодинамики, количество теплоты Q, переданное газу, равно сумме работы А, совершенной газом, и изменению DU внутренней энергии:
Q=DU+A, или Q= 3,65 МДж..
Пример 8. Определить изменение DS энтропии при изотермическом расширении кислорода массой m=10 г от объема v1=25 л до объема V1= 100 л.
Решение. Так как процесс изотермический, то в общем, выражении энтропии
температуру выносим за знак интеграла. Выполнив это, получим
(1)
Количество теплоты Q, полученное газом, найдем по первому началу термодинамики: Q=А+DU. Для изотермического процесса DU=0, следовательно,
Q=А, (2)
а работа А для этого процесса определяется по формуле:
А=(m/m)RТlп(V2/V1). (3)
С учетом (2) и (3) равенство (1) примет вид
DS=(m/m) R1п (V2/V1). (4)
Подставив в (4) числовые значения и произведя вычисления, получим
Пример 9. Найти добавочное давление р внутри мыльного пузыря диаметром d=10 см. Определить также работу A, которую нужно совершить, чтобы выдуть этот пузырь.
Решение. Пленка мыльного пузыря имеет две сферические поверхности — внешнюю и внутреннюю. Обе поверхности оказывают давление на воздух, заключенный внутри пузыря. Так как толщина пленки чрезвычайно мала, то диаметры обеих поверхностей практически одинаковы. Поэтому добавочное давление
р =2×2s/r,
где r - радиус пузыря. Так как r=d/2, то
р=8s/d.
Подставив в эту формулу значения s=40×103 Н/м , d=0,1 м и произведя вычисления, найдем
p=3,2 Па.
Работа, которую нужно совершить, чтобы, растягивая пленку, увеличить ее поверхность наDS, выражается формулой
A=sDS, или A=s(S-S0).
В данном случае S - общая площадь двух сферических поверхностей пленки мыльного пузыря; Sо - общая площадь двух поверхностей плоской пленки, затягивающей отверстие трубки до выдувания пузыря. Пренебрегая Sо, получим