Пусть даны 2 числовых выражения А и В. Соединив их знаком равенства, получим некоторое высказывание, называемое числовым равенством.
Равенство А = В считается истинным тогда и только тогда, когда оба выражения А и В имеют числовые значения, причем эти значения одинаковы.
Пример. 1) 16 : 2 = 3 + 5 – истинное числовое равенство, т.к. левая и правая части этого неравенства имеют значение 8;
2) 3 ∙ 4 = 15 – 4 – ложное равенство, т.к. значение левой части равно 12, а правой 11;
3) 15 : (10 – 10) = 15 – ложно, т.к. выражение в левой части не имеет значения.
Из данного выше определения вытекает, что если истинны равенства А = В и С = D, где А, В, С, D – числовые выражения, то при условии выполнимости соответствующих операций, истинны и равенства (А) + (С) = (В) + (D), (А) – (С) = (В) – (D), (А) ∙ (С) = (В) ∙ (D), (А) : (С) = (В) : (D), т.е. числовые равенства можно почленно складывать, вычитать, умножать, делить.
Отношение равенства числовых выражений обладает свойствами:
1) рефлексивности (А = А);
2) симметричности (А = В Þ В =А);
3) транзитивности (А = В Ù В = С Þ А =С), т.о. данное отношение является отношением эквивалентности и множество числовых выражений разбивается на классы эквивалентности, состоящие из выражений, имеющих одно и то же значение;
4) если к обеим частям истинного числового равенства прибавить одно и то же числовое выражение, имеющее смысл, то полученное числовое равенство будет также истинным (А = В Þ (А) + (С) = (В) + (С));
5) если обе части истинного числового равенства умножить на одно и то же числовое выражение, имеющее смысл, то полученное числовое равенство будет также истинным (А = В Þ (А) ∙ (С) = (В) ∙ (С));
6) если обе части истинного числового равенства возвести в одну и ту же нечетную степень, то получим истинное числовое равенство (если п – нечетное натуральное число, то А = В Û (А)п = (В) п;
7) если обе части истинного числового равенства, левая и правая части которого имеют неотрицательное значение, возвести в одну и ту же четную степень, то получим истинное числовое равенство (если п – четное натуральное число, значения числовых выражений А и В неотрицательны, то А = В Û (А)п = (В)п. Если снять условие, что значения числовых выражений А и В неотрицательны, то вместо эквивалентности будем иметь лишь импликацию А = В Þ(А)п = (В)п.