русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Законы Ньютона.


Дата добавления: 2014-09-06; просмотров: 1152; Нарушение авторских прав


В той или иной форме законы классической механики известны очень давно. Иногда эти законы формулировались и понимались с ошибками. Ярким примером одной из ошибок было неправильное понимание причин движения, высказанное Аристотелем. Он считал, что движение продолжается только до того момента времени, пока на объект действует сила. Ошибка состояла в том, что Аристотель не учитывал свойств инерции, присущих веществу. По мере развития физики и накопления экспериментальных данных, законы механики уточнялись и, наконец, были в современной форме сформулированы Исааком Ньютоном. Именем Ньютона названо много законов. Если говорить только о механике, то можно указать 4 закона Ньютона. Один из них – знаменитый закон Всемирного тяготения

.

Здесь – постоянная Всемирного тяготения, и – взаимодействующие массы, расстояние между которыми равно , дробь – орт, указывающий направление действия силы и проведенный из первой массы, знак минус показывает, что при взаимодействии масс возникает сила притяжения.

Однако, говоря о законах Ньютона в механике, чаще подразумевают три закона.

Первый закон – закон инерции. Как и остальные законы Ньютона он является результатом обобщения экспериментальных данных. Закон утверждает следующее. Если результирующая всех сил, действующих на материальную точку, равна нулю, то материальная точка находится в состоянии покоя или равномерного прямолинейного движения.

Первый закон исправляет ошибку Аристотеля. Он утверждает, что в природе существуют инерциальные системы отсчета, относительно которых материальная точка может покоиться.

Второй закон Ньютона, который иначе называется законом движения в классической физике может быть записан в трех близких формах:

А). .

 

Б). .

 

В). .

Форма закона А) - наиболее примитивная, «школьная» форма Второго закона Ньютона. Она плоха тем, что глядя на неё можно подумать, что ускорение является постоянной величиной. На самом деле ускорение может изменяться с течением времени.



Вторая форма – наиболее распространенная запись Второго закона Ньютона. Эту форму называют еще «Уравнение движения». Она дает решение для переменного ускорения или, что важнее, при заданных силах – зависимость , которую называют «Закон движения».

Определение закона движения (выполняется двойным интегрированием по времени) составляет прямую основную задачу динамики. Определение равнодействующей силы по известному (например, из эксперимента) закону движения – обратная основная задача динамики.

Приведем пример решения прямой задачи движения. Она имеет однозначное решение, если только заданы начальные условия, то есть координаты и проекции скоростей материальной точки в начальный момент времени (обычно за такой момент принимают , но можно выбирать произвольное значение ).

Пусть сила, действующая на материальную точку, равна и дважды интегрируема. Пусть также начальное положение точки определяется условием , а начальная скорость – условием . Учитывая Второй закон Ньютона, найдем:

,

или, используя определение мгновенного ускорения,

.

Отсюда следует

.

Если теперь провести неопределенное интегрирование, то можно получить

.

По условию, интеграл от силы существует, а значение скорости в начальный момент равно . Так как сила в начальный момент еще не изменила скорость, то мгновенная скорость приобретает однозначный вид

.

Теперь, при заданной силе, мгновенная скорость полностью определена и можно переходить к определению закона движения. Для этого воспользуемся определением мгновенной скорости и запишем

.

Отсюда следует:

.

Опять проводим неопределенное интегрирование:

.

Первый интеграл вычисляется, давая , второй остается неизменным – в случае конкретного указания силы, он также может быть вычислен. Произвольная константа определяется по начальному условию. При имеем и тогда

.

Закон движения определен полностью. Это называется решением первой задачи динамики «в квадратурах».

Необходимо подчеркнуть, что первая задача динамики (для любого случая – прямолинейного движения или вращения, отдельной материальной точки, системы точек или твердого тела) может быть решена только при указании начальных условий.

Форма В) – наиболее общая форма записи Второго закона Ньютона. Там проводится дифференцирование импульса по времени. Это дифференцирование может затрагивать только скорость, но может затрагивать и скорость, и массу. Такое дифференцирование пригодно и для релятивистских задач, когда масса зависит от скорости и от времени: . Эта же форма пригодна и для классической области, если масса системы переменна. Примерами может служить поливальная машина и ракета. Именно на основе этой формы Циолковский получил уравнение движения ракеты и обосновал утверждение, что ракета может лететь в вакууме (было время, когда некоторые ученые утверждали, что в космосе ракета не полетит: «Ей там не от чего отталкиваться»).

Последнее утверждение получается при использовании двух других законов – Третьего закона Ньютона или закона сохранения импульса. Интересно, что в отличие от основных законов физики, являющихся (как правило) обобщением опытных данных, из закона сохранения импульса можно строго математически получить Третий закон Ньютона, и наоборот, приняв Третий закон можно на его основе получить закон сохранения импульса.

Для того, чтобы сформулировать третий закон, надо ввести понятие «замкнутая система»(иногда говорят «изолированная система», см. Д.В. Сивухин, т. I Механика). По определению это такая система, на каждую материальную точку не действуют внешние силы. Тела замкнутой системы могут взаимодействовать только меду собой.

Пусть система состоит из двух материальных точек. Тогда можно показать (или принять как экспериментальный факт), что эти силы имеют три особенности. Они:

А) равны по величине (по модулю),

Б) направлены вдоль прямой, соединяющей материальные точки,

В) причем в противоположные стороны.

Это словесная формулировка Третьего закона Ньютона. В виде формулы этот закон записывается так:

,

индекс показывает, что рассматривается сила, действующая на первую материальную точку со стороны второй точки.

Если система состоит из материальных точек, то третий закон Ньютона обобщается:

.

Здесь есть некая тонкость, заключающаяся в том, что в механике рассматривают только парные взаимодействия частиц. Например, силы типа и более сложные не рассматриваются. Закон сохранения импульса удобнее обсудить позже.



<== предыдущая лекция | следующая лекция ==>
Механическое движение и его основные понятия. | Плоское криволинейное движение.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.004 сек.