Переменная булевой функции F называется несущественной (или фиктивной), если , то есть если изменение значения в каждом наборе значений не меняет значения функции. При этом существует такая формула, реализующая эту булеву функцию, в которой отсутствует .
Пример. С помощью основных равносильностей доказать, что в булевой функции F = переменная является фиктивной.
Решение.Применяя закон поглощения и закон склеивания, получим
F = .
Так как существует такая формула, реализующая эту булеву функцию, в которой отсутствует , то эта переменная является фиктивной.
Пример. С помощью таблицы истинности убедиться в справедливости законов де Моргана .
Решение. Построим таблицу истинности для и .
Так как в таблице истинности булевым функциям и соответствуют одинаковые столбцы, то формулы и равносильны.
Пример. С помощью основных равносильностей доказать закон обобщенного склеивания .
Решение. Применяя закон склеивания (в обратном порядке, то есть ) и дистрибутивность (то есть вынесем за скобки и ), получим
.
Пример. С помощью основных равносильностей доказать, что .
Решение. Применяя основные равносильности, получим