Как мы видели, ординалистский подход к полезности вовсе не запрещает ее количественного выражения; он допускает большое разнообразие шкал, требуя от них лишь взаимной монотонности. Именно этот произвол в выборе шкал, при котором требуется лишь, чтобы переход от одной шкалы к другой не нарушал порядка (т. е. чтобы деления на линейках рис. 9 не были перепутаны), и означает, что мы имели дело с порядковой полезностью.
Рис. 9. Ординалистская функция полезности. Кривым безразличия могут быть присвоены числовые значения с помощью любой монотонной шкалы. Все изображенные на рисунке линейки в равной степени пригодны для этой цели.
Допустим ли такой же произвол в случае, когда наш выбор может иметь случайные исходы, а в качестве числовой меры случайного исхода используется показатель типа математического ожидания? Легко убедиться, что нет. Сравним два варианта выбора. Первый приводит к случайному результату с двумя исходами А и В (рис. 10), имеющими равные вероятности 0.5 и 0.5; второй — к промежуточному (по предпочтениям) неслучайному результату С.
Рис. 10. Случайная полезность в разных шкалах
Допустим, что в некоторой шкале u1(А) = 20, u1(B)= = 10 и u1(С) = 12. Полезность первого варианта выбора определяется величиной 0.5•20 + 0.5•10= =15, и он предпочтительнее второго, полезность которого в этой шкале всего 12 единиц.
Теперь рассмотрим иную шкалу, в которой u1(А) = 200, u2(В) = 100 и u2(С) = 180.
Порядковые отношения, устанавливаемые этой шкалой, совпадают с предыдущей. Но в ней полезность первого выбора равна 0.5•200 + 0.5•100=150 единиц, и в этой шкале он уступает второму.
Мы пришли к противоречивому результату, а это значит, что, имея дело со случайными последствиями решений и используя для их оценки математические ожидания полезностей, мы не можем выбирать для измерения полезностей шкалы, согласованные друг с другом только в отношении порядка. Какая-то из рассмотренных нами шкал, а может быть, и обе, не годятся для представления случайных полезностей. Дж. фон Нейман и О. Моргенштерн разработали систему аксиом количественной полезности. Из этих аксиом следует существование такой функции полезности, математическое ожидание значений которой согласовано с предпочтениями субъекта.
А раз такая функция существует, можно представить себе инструмент для измерения ее значений. Всякое измерение есть сравнение с эталоном. В нашем случае в качестве эталона следовало бы выбрать такую вещь, приобретение которой вело бы к случайным результатам, сильно различающимся по полезности. Идеальным примером подобной вещи служит лотерейный билет: покупатель, изучив условия лотереи, знает, какие в ней разыгрываются призы и может оценить вероятность получения каждого из них.
Единственное, чего он не знает, достанется ли ему выигрыш.
Ситуация, рассмотренная нами выше и иллюстрируемая рис. 10, может рассматриваться как дилемма, стоящая перед потребителем: купить ли ему вполне определенный набор благ С или билет беспроигрышной лотереи, в которой разыгрывается поровну “хороших” наборов А и наборов “похуже” В. Аксиома рациональности в теории Неймана—Моргенштерна утверждает, что потребитель в состоянии решить, какой из покупок — набору С или лотерейному билету — он отдает предпочтение. Рассмотрим теперь лотерею, в которой разыгрываются два приза: соответствующий самому высокому уровню удовлетворения потребностей субъекта Х (“хороший”) и самому низкому П (“плохой”). Произвольно установим значения функции полезности U(П) = 10, U(X) = 20.
Оказывается, мы тем самым однозначно установили значения функции полезности для всех наборов благ. Допустим, что потребитель сравнивает приобретение некоторого конкретного набора благ с участием в такой лотерее. Если вероятность выигрыша Х велика (а вероятность 1 — выигрыша П мала), то он, пожалуй, предпочтет лотерею. Если же величина слишком мала, то он откажется от лотереи в пользу набора С. При некотором промежуточном значении вероятности, обозначим его , оба варианта окажутся равноценными. Если считать, что U(Q) —та самая функция полезности, существование которой следует из принятых аксиом, то должно выполняться равенство:
U(C) = aCU(X) + (1 – aC)U(П) = 20aC + 10(1 – aC),
а это значит, что мы однозначно определили полезность набора С. Так, если aC = 0.6, то U(C) = 16, как в одном из рассмотренных выше примеров. Мы выбрали призы Х и П таким образом, что любой набор благ окажется промежуточным (в смысле порядка). Поэтому для любого набора благ можно подобрать соответствующее значение вероятности , при котором лотерея с точки зрения субъекта не лучше и не хуже этого набора, и описанная нами процедура однозначно определила бы числовое значение полезности любого набора.
Напомним, что значения U(X) и U(П) мы назначили произвольно. Но, закрепив их, мы уже однозначно задали всю шкалу полезностей. Придавая произвольное значение U(П) = a и любое, но обязательно большее, значение U(X) = а + b, мы для набора С получили бы значение полезности:
U(C) = aC(a + b) + (1 – aC)a = a + baC.
Таким образом, все шкалы различаются между собой только значением свободного члена а (это может быть любое число) и коэффициента пропорциональности b (это может быть любое положительное число). Иными словами, любая шкала полезности по Нейману—Моргенштерну может быть получена из любой другой с помощью линейного преобразования — изменения начала отсчета и масштаба. Наиболее естественной представляется шкала, в которой U(П) = 0, U(X) = 1. Здесь полезность любого набора совпадает с вероятностью выигрыша “хорошего” приза в “безразличной” лотерее, U(C) = aC.
Теория полезности Неймана-Моргенштерна возникла тогда, когда в экономической науке уже утвердилось представление о том, что порядковая полезность достаточно полно описывает поведение потребителя. Новый взгляд, требовавший возврата (хотя и на ином уровне) к количественной полезности, естественно, вызвал активную дискуссию в ученом мире. К настоящему времени сферы применения обоих подходов в основном разделились.
Там, где имеется однозначная связь между выбором и его последствиями, вполне достаточен ординалистский подход, и в наших дальнейших лекциях мы ограничимся порядковой полезностью. Но в тех задачах, где нужно учесть случайный характер этой связи, требуется количественное измерение полезности.