русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Лотерея как средство измерения полезности


Дата добавления: 2014-09-02; просмотров: 851; Нарушение авторских прав


 

Как мы видели, ординалистский подход к полезности вовсе не запрещает ее количественного выражения; он допускает большое разнообразие шкал, требуя от них лишь взаимной монотонности. Именно этот произвол в выборе шкал, при котором требуется лишь, чтобы переход от одной шкалы к другой не нарушал порядка (т. е. чтобы деления на линейках рис. 9 не были перепутаны), и означает, что мы имели дело с порядковой полезностью.

 


Рис. 9. Ординалистская функция полезности. Кривым безразличия могут быть присвоены числовые значения с помощью любой монотонной шкалы. Все изображенные на рисунке линейки в равной степени пригодны для этой цели.

 

Допустим ли такой же произвол в случае, когда наш выбор может иметь случайные исходы, а в качестве числовой меры случайного исхода используется показатель типа математического ожидания? Легко убедиться, что нет. Сравним два варианта выбора. Первый приводит к случайному результату с двумя исходами А и В (рис. 10), имеющими равные вероятности 0.5 и 0.5; второй — к промежуточному (по предпочтениям) неслучайному результату С.

 


Рис. 10. Случайная полезность в разных шкалах

Допустим, что в некоторой шкале u1(А) = 20, u1(B)= = 10 и u1(С) = 12. Полезность первого варианта выбора определяется величиной 0.5•20 + 0.5•10= =15, и он предпочтительнее второго, полезность которого в этой шкале всего 12 единиц.

 

Теперь рассмотрим иную шкалу, в которой u1(А) = 200, u2(В) = 100 и u2(С) = 180.

 

Порядковые отношения, устанавливаемые этой шкалой, совпадают с предыдущей. Но в ней полезность первого выбора равна 0.5•200 + 0.5•100=150 единиц, и в этой шкале он уступает второму.

 

Мы пришли к противоречивому результату, а это значит, что, имея дело со случайными последствиями решений и используя для их оценки математические ожидания полезностей, мы не можем выбирать для измерения полезностей шкалы, согласованные друг с другом только в отношении порядка. Какая-то из рассмотренных нами шкал, а может быть, и обе, не годятся для представления случайных полезностей. Дж. фон Нейман и О. Моргенштерн разработали систему аксиом количественной полезности. Из этих аксиом следует существование такой функции полезности, математическое ожидание значений которой согласовано с предпочтениями субъекта.



 

А раз такая функция существует, можно представить себе инструмент для измерения ее значений. Всякое измерение есть сравнение с эталоном. В нашем случае в качестве эталона следовало бы выбрать такую вещь, приобретение которой вело бы к случайным результатам, сильно различающимся по полезности. Идеальным примером подобной вещи служит лотерейный билет: покупатель, изучив условия лотереи, знает, какие в ней разыгрываются призы и может оценить вероятность получения каждого из них.

 

Единственное, чего он не знает, достанется ли ему выигрыш.

 

Ситуация, рассмотренная нами выше и иллюстрируемая рис. 10, может рассматриваться как дилемма, стоящая перед потребителем: купить ли ему вполне определенный набор благ С или билет беспроигрышной лотереи, в которой разыгрывается поровну “хороших” наборов А и наборов “похуже” В. Аксиома рациональности в теории Неймана—Моргенштерна утверждает, что потребитель в состоянии решить, какой из покупок — набору С или лотерейному билету — он отдает предпочтение. Рассмотрим теперь лотерею, в которой разыгрываются два приза: соответствующий самому высокому уровню удовлетворения потребностей субъекта Х (“хороший”) и самому низкому П (“плохой”). Произвольно установим значения функции полезности U(П) = 10, U(X) = 20.

 

Оказывается, мы тем самым однозначно установили значения функции полезности для всех наборов благ. Допустим, что потребитель сравнивает приобретение некоторого конкретного набора благ с участием в такой лотерее. Если вероятность выигрыша Х велика (а вероятность 1 — выигрыша П мала), то он, пожалуй, предпочтет лотерею. Если же величина слишком мала, то он откажется от лотереи в пользу набора С. При некотором промежуточном значении вероятности, обозначим его , оба варианта окажутся равноценными. Если считать, что U(Q) —та самая функция полезности, существование которой следует из принятых аксиом, то должно выполняться равенство:

 

U(C) = aCU(X) + (1 – aC)U(П) = 20aC + 10(1 – aC),

 

а это значит, что мы однозначно определили полезность набора С. Так, если aC = 0.6, то U(C) = 16, как в одном из рассмотренных выше примеров. Мы выбрали призы Х и П таким образом, что любой набор благ окажется промежуточным (в смысле порядка). Поэтому для любого набора благ можно подобрать соответствующее значение вероятности , при котором лотерея с точки зрения субъекта не лучше и не хуже этого набора, и описанная нами процедура однозначно определила бы числовое значение полезности любого набора.

 

Напомним, что значения U(X) и U(П) мы назначили произвольно. Но, закрепив их, мы уже однозначно задали всю шкалу полезностей. Придавая произвольное значение U(П) = a и любое, но обязательно большее, значение U(X) = а + b, мы для набора С получили бы значение полезности:

 

U(C) = aC(a + b) + (1 – aC)a = a + baC.

 

Таким образом, все шкалы различаются между собой только значением свободного члена а (это может быть любое число) и коэффициента пропорциональности b (это может быть любое положительное число). Иными словами, любая шкала полезности по Нейману—Моргенштерну может быть получена из любой другой с помощью линейного преобразования — изменения начала отсчета и масштаба. Наиболее естественной представляется шкала, в которой U(П) = 0, U(X) = 1. Здесь полезность любого набора совпадает с вероятностью выигрыша “хорошего” приза в “безразличной” лотерее, U(C) = aC.

 

Теория полезности Неймана-Моргенштерна возникла тогда, когда в экономической науке уже утвердилось представление о том, что порядковая полезность достаточно полно описывает поведение потребителя. Новый взгляд, требовавший возврата (хотя и на ином уровне) к количественной полезности, естественно, вызвал активную дискуссию в ученом мире. К настоящему времени сферы применения обоих подходов в основном разделились.

 

Там, где имеется однозначная связь между выбором и его последствиями, вполне достаточен ординалистский подход, и в наших дальнейших лекциях мы ограничимся порядковой полезностью. Но в тех задачах, где нужно учесть случайный характер этой связи, требуется количественное измерение полезности.

 



<== предыдущая лекция | следующая лекция ==>
РАЗДЕЛ 3. От порядковой полезности к количественной | РАЗДЕЛ 4. Как тратили деньги советские люди


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.047 сек.