русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

РАЗДЕЛ 3. От порядковой полезности к количественной


Дата добавления: 2014-09-02; просмотров: 578; Нарушение авторских прав


 

Что нужно для количественного измерения

 

После классических работ Дж. Хикса и Р. Аллена ординалистский подход к полезности завоевал признание экономистов-теоретиков; они утвердились в мнении о том, что поведение потребителя можно достаточно полно описать на основе допущения о наличии у него предпочтений одних наборов благ перед другими.

 

Какие факты могли бы свидетельствовать о существовании количественной полезности?

 

Таким фактом, если бы его удалось обнаружить, было бы умение потребителя сопоставлять не только наборы благ, но и различия между парами наборов. Скажем, А > В и С > D. Если потребитель сможет определить, какое из преимуществ — А перед B или С перед D — значительнее, либо же сможет сказать, что оба преимущества равноценны, то эта способность, проявляясь в актах потребительского выбора, могла бы служить основой для построения количественной шкалы измерений.

 

Действительно, допустим, что А > В и что нам удалось найти такой набор С (А > С > В), что преимущество А перед С равнозначно преимуществу С перед В. Это позволяет утверждать, что полезность набора С расположена “точно в середине” между полезностями A и B, И если мы придали какие-то количественные значения полезности U(А) и U(B), то мы должны полезности набора С приписать значение:

 

U(C) = (U(A) + U(B))/2.

 

Затем мы можем разделить интервал полезностей между А и С еще раз пополам и продолжить этот процесс сколь угодно далеко, построив шкалу полезностей с любой нужной точностью.

 

Но мы могли бы построить шкалу не только для полезностей, промежуточных между A и B. Допустим, мы нашли набор D(А > В > D), такой, что превосходство А перед В равнозначно превосходству В перед D. Теперь уже полезность В располагается посредине между А и D, и поэтому:



 

U(B) = (U(A) + U(D))/2,

 

так что:

 

U(D) = 2U(B) – U(A).

 

Таким образом, умея сравнивать пары наборов по степени предпочтительности и задав численные значения полезностям двух наборов, мы однозначно определили бы численные значения полезностей любых наборов.

 

Подобные ситуации возникали и в естественных науках. Примером может служить установление количественной шкалы температур. Человек по своим ощущениям может установить отношения “теплее”, “холоднее” — это не количественное, а лишь порядковое отношение. При контакте двух по-разному нагретых тел одно из них нагревается, другое — охлаждается до выравнивания температуры. “Тепло” (смысл этого понятия до поры до времени был неясен, поэтому мы и берем это слово в кавычки) всегда перетекает от более нагретого тела к более холодному. Но и эти факты не выводят за пределы порядковой шкалы температур.

 

Положение изменилось, когда появилась концепция, связывающая передачу “тепла” с изменением температуры. Для построения количественной шкалы оказалось достаточно двух принципов: 1) при контакте двух тел общее количество “тепла” в них не изменяется; 2) равные количества “тепла”, переданные одинаковым телам, вызывают одинаковые изменения температуры.

 

Если мы, смешав воду из сосудовА и В в равных количествах, получили воду точно такой же температуры, что и в сосуде С, у нас есть основания считать, что разность температур между А и С такая же, как между С и В. Если в сосуде А только что растаял лед и мы приняли его температуру за 0, а в сосуде В вода кипела, и мы приняли ее температуру за 100, то мы должны придать значение 50 для температуры воды в сосуде С. Теперь мы можем отградуировать термометр. Значения 0 и 100 мы приняли произвольно. Поступив таким образом, мы построили температурную шкалу Цельсия. Задавая другие значения, мы изменили бы начало отсчета и единицу температуры; при соответствующем выборе мы могли бы получить температурные шкалы Реомюра или Фаренгейта. Переход от одной из них к другой выражается соотношением:

 

t1 = a + bt2.

 

Свободный член а характеризует перенос начала отсчета, а коэффициент b — соотношение единиц.

 

Вильфредо Парето, анализируя сложившуюся к последнему десятилетию XIX в. количественную теорию полезности, увидел в ней слабое звено. Поскольку, по мнению Парето, поведение потребителя не обнаруживает его способности сопоставлять одну пару наборов с другой, гипотеза о существовании количественной меры полезности не вытекала из наблюдаемых фактов и ее отрицание не входило в противоречие с опытом.

 

Значит, она “лишняя”, и нужно строить теорию предпочтения, обходясь без нее. аков был методологический принцип, уже на протяжении веков утвердившийся в науке и получивший название “бритва Оккама”.

 

Позднее Дж. Хикс и Р. Аллен построили развитую теорию потребления, базирующуюся лишь на порядковых шкалах индивидуальных предпочтений.

 

Между тем факты потребительского поведения, для описания которых порядковое представление о полезности недостаточно, существовали. Но они относились к таким аспектам потребительского выбора, которые в то время не привлекали внимания экономистов-теоретиков.

 

Случайные полезности

 

Homo oeconomicus, совершая тот или иной выбор, не всегда с полной определенностью знает его последствия. Это относится и к потребительскому выбору. Вы приобрели фарфоровую чашку и желаете насладиться ее красотой, но назавтра после покупки случайно поставили ее мимо стола, и покупка оказалась “менее полезной”, чем вы рассчитывали.

 

Или вы купили арбуз, и он оказался гораздо вкуснее, чем можно было подумать по его виду. Но все могло случиться по-иному: чашка могла бы служить вам много лет и ее ценность повышалась бы, а арбуз мог оказаться невкусным. Полезность покупки могла оказаться той или иной и из-за изменения условий ее использования (классический пример в новелле О’Генри “Дары волхвов”). Помимо этих эпизодов человек сознательно совершает ряд действий, результаты которых носят случайный характер. Он участвует в лотереях и играет в азартные игры. Он страхует свою жизнь и свое имущество, регулярно внося страховую плату и надеясь, что с ним не произойдет “страховой случай”, но не исключая такой возможности. Теория игр, созданная в 20-е гг. одним из самых блестящих ученых XX в. Джоном фон Нейманом, рассматривала поведение “игрока” в условиях, когда последствия его “хода” полностью не определяются его выбором. Более того, оказалось, что игрок, стремящийся к максимальному выигрышу, при определенных условиях должен делать случайные ходы. Теория игр породила новые подходы к анализу поведения экономического субъекта. Основные теоретические результаты в этом направлении были изложены Джоном фон Нейманом и Оскаром Моргенштерном в фундаментальном труде “Теория игр и экономическое поведение”, вышедшем в свет в 1943 г. (в русском переводе в 1970 г.).

 

Основное допущение, принятое Дж. фон Нейманом и О. Моргенштерном, состоит в том, что потребитель и в случайных ситуациях ведет себя рационально. А это значит, что, производя свой выбор, он сопоставляет не только варианты с однозначными исходами, но и такие варианты, исходы которых имеют случайную полезность. В последнем случае потребитель должен знать как все возможные исходы, так и их вероятности.

 

Оказалось, что в таком допущении содержится все необходимое для существования количественной меры полезности.

 

Авторы приводят такой пример. Некто предпочитает стакан чая (Ч) чашке кофе (К), а чашку кофе — стакану молока (М). Допустим, что он поставлен перед выбором: чашка кофе или стакан с неизвестным содержимым, которое с равными вероятностями может оказаться чаем и молоком. Если субъект выбрал кофе, это значит, что из двух предпочтений (Ч > К) и (К > М) второе оказалось более значимым. Следовательно, по своей полезности кофе ближе к чаю, чем к молоку. Если бы он выбрал стакан с неизвестным содержимым, это позволило бы сделать противоположный вывод. Если, наконец, ему безразлично, какую из двух возможностей выбрать, то это означает, что оба предпочтения, Ч > К и К > М, для него равноценны и полезность чашки кофе находится ровно посредине между полезностями стакана чая и стакана молока. Как мы уже видели, возможность сравнивать пары благ или их наборов — это уже основание для построения количественной шкалы полезностей.

 

Как могут сравниваться между собой численные значения полезностей решений, если каждое из них может иметь различные исходы с разными вероятностями?

 

Рассмотрим самый простой случай. Допустим, что некоторый выбор влечет за собой два возможных исхода, дающих выигрыш в размере u1 и u2 соответственно. Вероятности исходов могут быть неодинаковыми. Допустим, что выбор был произведен N раз, и при этом N1 раз наступил первый исход, а N2 = N – N1— второй. Тогда общая сумма выигрыша равна N1u1 + N2u2 а для одного акта выбора выигрыш в среднем равен:

 

u = (N1u1 + N2u2)/N = au1 + (1 – a)u2,

 

где a = N1/N— доля первого исхода, 1 – a = N1/N— доля второго исхода. При большом числе повторений и мало отличаются от вероятностей каждого исхода. Взяв величину равной вероятности первого исхода, мы можем рассматривать величину и как меру случайного выигрыша. Например, если величины выигрыша равнялись 20 и 10 единиц с вероятностями 0.6 и 0.4, то и = 0.6 • 20 + 0.4 • 10= = 16 единицам.

 

В более общем случае, если m возможных исходов дают выигрыши u1, u2, ..., um с вероятностями (так что ), в качестве числовой меры случайного выигрыша мы могли бы принять:

 

u = a1u1 + a2u2 + … +amum.

 

Показатель такого вида называется математическим ожиданием и играет важную роль в теории вероятностей. Заметим, что математическое ожидание случайного выигрыша зависит и от выигрышей при различных исходах, и от вероятностей каждого из них. Если, как и раньше, выигрыши равны 20 и 10 единицам, а вероятность а пробегает все значения от 0 до 1, то математическое ожидание принимает все значения от 10 до 20 единиц. И если у нас есть вариант выбора с фиксированным (не случайным) промежуточным выигрышем, скажем, 14 единиц, то можно подобрать такую вероятность a, что случайный выигрыш окажется равноценным рассматриваемому фиксированному (как легко проверить, в данном случае a = 0.4).

 



<== предыдущая лекция | следующая лекция ==>
РАЗДЕЛ 2. Оптимум потребителя | Лотерея как средство измерения полезности


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.83 сек.