русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Тригонометрические ряды Фурье.


Дата добавления: 2014-09-02; просмотров: 1063; Нарушение авторских прав


 

Тригонометрическим рядом Фурье для функции f(x) на интервале от

называется ряд вида:

, где

Условия разложимости:

Пусть f(x):

1) Периодическая с

2) Кусочномонотонна

3) Ограничена на функцию f(x) можно разложить в ряд Фурье на , который сходится к этой функции во всех точках непрерывности, в точках разрыва сумма ряда равна полусумме левого и правого предела функции.

Замечание:Основная трудность построения рядов Фурье в вычислении интегралов.

Пример:

Разложить функцию f(x)=x на в тригонометрический ряд Фурье, сделать чертеж.

 

Тригонометрический ряд Фурье от четных и нечетных функций и на интервале .

 

Если f(x) – четная

- ряд Фурье по косинусам.

 

Если f(x) – нечетная

- ряд Фурье по синусам.

Если функция f(x) определена на интервале ее нужно продолжить (доопределить) на интервал и только потом построить ряд Фурье. Продолжение функции на интервал должно быть естественным, лучшее продолжение – четное или нечетное.

Четное продолжение:

Нечетное продолжение:

 

Тригонометрический ряд Фурье на интервале .

 

Пусть f(x) определена на и период

Замена: определена на и с периодом и ее можно разложить в тригонометрический ряд Фурье :

, где

Замена:

 

t
x

 

- тригонометрический ряд Фурье по на

Условия разложимости функции в ряд Фурье на интервале аналогично условиям на интервале .

 

Ряды Фурье на интервале .

 

Если f(x) кусочно-монотонна и ограничена на интервале , то её нужно продолжить на интервал либо чётным, либо нечётным образом.



Для чётного продолжения:

Для нечетного продолжения:

.



<== предыдущая лекция | следующая лекция ==>
Приближенное вычисление с помощью рядов Тейлора и Маклорена. | Лекций по микроэкономике


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.395 сек.