русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Линейные однородные дифференциальные уравнения 2 порядка с постоянными коэффициентами.


Дата добавления: 2014-09-02; просмотров: 761; Нарушение авторских прав


Это уравнения вида: , где p и g – числа (*).

Определение:Уравнение - называется характеристическим уравнением дифференциального уравнения (*) – обычное квадратное уравнение, решение которого зависит от D, возможны следующие случаи:

1)D>0 - два действительных различных решения.

2)D=0 - один действительный корень кратности 2.

3)D<0 - два комплексно сопряжённых корня.

Для каждого из этих случаев укажем фундаментальную систему решений, составленную из 2 функций и .

Будем показывать что:

1) и - ЛНЗ

2) и - решение (*)

Рассмотрим 1 случай D>0 - 2 действительных различных корня.

Характеристическое уравнение:

В качестве ФСР возьмём:

а) покажем ЛНЗ

б) покажем, что - решение (*), подставим

+ p +g =0

верное равенство решение (*)

аналогично показывается для y2.

Вывод: - ФСР (*) общее решение

 

Рассмотрим 2случай: D=0 - 1 действительный корень кратности 2.

В качестве ФСР возьмём:

ЛНЗ: ЛНЗ есть.

- решение уравнения (см. 1 случай). Покажем что - решение.

 

подставим в ДУ

- решение.

Вывод:ФСР

Пример:

3 случай:D<0 - 2 комплексно сопряжённых корня.

подставим в характ. уравнение

комплексное число равно 0, когда действительная и мнимая часть равны 0.

- будем использовать.

Покажем, что - образуют ФСР.

А)ЛНЗ:

Б) - решение ДУ

верное равенство - решение ДУ.

Аналогично показывается, что тоже решение.

Вывод:ФСР:

Общее решение:

Если заданы н.у.

- то сначала находят общее решение , его производную: , а потом в эту систему подставляют н.у и находят и .

 

 



<== предыдущая лекция | следующая лекция ==>
Общее решение линейного однородного дифференциального уравнения порядка n. | Линейные однородные ДУ порядка n с постоянными коэффициентами.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.285 сек.