русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Линейно независимые и линейно зависимые системы функций. Определитель Вронского и его свойства.


Дата добавления: 2014-09-02; просмотров: 1946; Нарушение авторских прав


 

Определение: Система функций - называется линейно независимой , если линейная комбинация коэффициенты .

Определение:Систему функций - называют линейно зависимой, если и есть коэффициенты .

Возьмём систему двух линейно зависимых функций т.к или - условие линейной независимости двух функций.

Примеры:

1) линейно независимы

2) линейно зависимы

3) линейно зависимы

Определение:Дана система функций - функций переменной х.

Определитель - определитель Вронского для системы функций .

Для системы двух функций определитель Вронского выглядит следующим образом:

Свойства определителя Вронского:

1) Если - линейно зависимы на [a;b] на этом отрезке.

2) Если - линейно независимые, решения дифференциального уравнения при любых значениях х в области, где определены функции а1…аn

Теорема:Об общем решении линейного однородного дифференциального уравнения 2 порядка.

Если y1 и y2 – линейно независимые решения линейного однородного дифференциального уравнения 2 порядка, то

общее решение имеет вид:

Доказательство: - решение по следствию из Т1 и Т2.

Если даны начальные условия то и должны находится однозначно.

- начальные условия.

Составим систему для нахождения и . Для этого подставим начальные условия в общее решение.

определитель этой системы: - определитель Вронского, вычисленный в точке х0

т.к и линейно независимы (по 20)

т.к определитель системы не равен 0, то система имеет единственное решение и и находятся из системы однозначно.

 



<== предыдущая лекция | следующая лекция ==>
Линейные однородные дифференциальные уравнения порядка n. | Общее решение линейного однородного дифференциального уравнения порядка n.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.17 сек.