русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Правила минимизации логических функций


Дата добавления: 2014-09-02; просмотров: 1054; Нарушение авторских прав


Общие правила можно установить только для случаев, когда в результате минимизации получаются так называемые минимальные нормальные формы (МНФ) функций.

Есть понятие соседних минтермов (макстермов): - два минтерма и будем называть соседними,если они различаются только одним первичным термом , т.е. для одного из минтермов ep=0, а для другого ep=1 (все же остальные первичные термы одинаковые)

Например: если n=3, то минтермы и являются соседними, так как они различаются только одним первичным термом . Для минтерма соседними являются также минтермы и . Отсюда можно сказать, что каждый минтерм n переменных имеет по n соседних минтермов из общего числа 2n минтермов.

Рассмотрим контерм n переменных , не зависящий от одной переменной, т.е. случай, когда контерм является конъюнкцией (n-1)-го первичного терма. Данный контерм можно представить в виде . Очевидно, что полученные минтермы и являются соседними, так как они различаются только одним первичным термом . Отсюда следует правило минимизации: дизъюнкцию двух соседних минтермов можно заменить одним контермом, независящим от одной переменной.

Если минтерм имеет два соседних минтерма, то их можно заменить двумя контермами независящих от соответствующих переменных, так как согласно закону 1.6 (x+x=x) минтерм, который соседний с двумя другими, можно заменить на дизъюнкцию любого числа равных ему минтермов. В результате такого объединения можно получить контермы соседние друг с другом. Их так же можно объединить, получая из двух соседних контермов, независящих от одной переменной, один контерм, независящий од двух переменных. Такая процедура проводится до тех пор пока функция будет состоять только из не соседних контермов или минтермов.

Исходя из выше сказанного, можно установить общее правило минимизации: одним контермом n переменных , не зависящим от m переменных , можно заменить дизъюнкцию 2m минтермов, если каждый из них имеет по m соседних минтермов среди остальных 2m-1 минтермов.



В результате таких операций получается функция: - такая форма представления функции называется ДНФ, а если она содержит минимально возможное число первичных термов , то она называется минимальной ДНФ (МДНФ).

Получение минимальной конъюнктивной нормальной формы (МКНФ) сводится к нахождению двойственной функции от МДНФ, в результате чего получаем:



<== предыдущая лекция | следующая лекция ==>
Минимизация логических функций | Раздел №1«Дифференциальные уравнения»


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.473 сек.