русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Синтез САУ


Дата добавления: 2014-07-12; просмотров: 3469; Нарушение авторских прав


До сих пор мы в основном изучали задачу анализа САУ, когда математическая модель замкнутой САУ считалась заданной, и требовалось определить качество её работы: устойчивость, точность воспроизведения входного сигнала и т.п.

Важной, и более сложной, является задача синтеза, когда заданными считаются математическая модель управляемого объекта ( и может быть измерительного и исполнительного устройств). Требуется выбрать структуру САУ, закон управления и числовые значения параметров регулятора, определяющие желаемое качество САУ.

С задачами синтеза мы уже встречались. Синтез САУ можно проводить, используя критерии устойчивости, Д-разбиение, методы корневых годографов.

Синтез одномерных одноконтурных САУ с единичной ООС с помощью ЛАФЧХ разомкнутой системы

Этот метод использует тесную связь между переходной функцией замкнутой САУ при ступенчатом воздействии и вещественной частью частотной характеристики замкнутой САУ.

, здесь . (1)

.

Т.о. по частотным характеристикам разомкнутой системы можно определить частотные характеристики замкнутой системы и наоборот. Имеются номограммы, связывающие эти частотные характеристики.

По мы можем оценить переходный процесс (см. (1)).Таким образом, зная , мы можем оценить переходный процесс в системе.

Решать задачу синтеза САУ по частотным характеристикам удобнее, когда частотные характеристики построены в логарифмическом масштабе.

В логарифмическом масштабе по оси ординат у откладывается в дб.

увеличение этого соотношения в 10 раз соответствует увеличению

По оси абсцисс откладывается частота в логарифмическом масштабе.

Декада – изменение частоты в 10 раз.

 

 

Главное преимущество построения частотных характеристик в логарифмическом масштабе состоит в том, что их можно строить приближенно, практически без вычислений.



Возьмем инерционное звено . Его передаточная функция ,

-АЧХ. Частота, где , т.е. - частота сопряжения.

При приближенном построении ЛАЧХ:

1) в пренебрегаем и , а дБ

2) в пренебрегаем 1 и и в логарифмическом масштабе

Определим наклон при :

.

Наклон= = - 20дб/дек.

Следовательно, строя АЧХ в логарифмическом масштабе, можно убывающую часть характеристики заменить прямой с наклоном - 20дб/дек. Наибольшая погрешность будет в точке изгиба ( ).

Интегрирующее звено.

, , , при .

Наклон:

Наклон= - 20 дб/дек

Аналогично можно показать, что у дифференцирующего звена наклон будет + 20 дб/дек.

Рассмотрим сначала на примере принцип построения приближенной ЛАЧХ (ФЧХ рассчитываются точно по формулам).

Приближенность построения ЛАЧХ заключается в том, что в частотной характеристике в членах :

1) при пренебрегают членом и звено рассматривают как усилительное ;

 

2) при пренебрегают 1 и рассматривают их как интегрирующее звено с частотной характеристикой , наклон характеристики которого – 20 дб/дек и при величина амплитуды равна 20lgK.

 

Частота , где - называется частотой сопряжения.

Определим частоты сопряжения, где ( )

 

 

 

Во что превратится с учетом сделанных предположений:

.

.

Откладываем на оси частот частоты сопряжения.

Построение начинаем с интегрирующего звена: на частоте откладываем 20lgK=20lg100=40дб и проводим линию с наклоном -20дб/дек. На частоте «подсоединяем» еще одно интегрирующее звено – наклон стал -40дб/дек.

На частоте «подсоединяются» два дифференцирующих звена. У одного дифференцирующего звена наклон +20дб/дек, у двух интегрирующих звеньев наклон будет +40дб/дек, следовательно, результирующий наклон при будет -40дб/дек+40дб/дек=0 дб/дек.

На частоте «подсоединится еще одно интегрирующее звено и наклон станет - 20 дб/дек.

Фазо-частотная характеристика рассчитывается.

1зв 2зв
0,2
0,8

 

С помощью ЛАЧХ и ФЧХ нетрудно установить устойчивость замкнутой системы.

Согласно критерию устойчивости Найквиста, замкнутая САУ устойчива, если АФЧХ разомкнутой системы имеет вид (астатическая система):


- запас устойчивости по фазе. Амплитуда равна 1, а до не хватает .

- запас устойчивости по амплитуде. , а до равенства амплитуды 1 не хватает .

Теперь перенесем всё это на ЛАФЧХ.


На частоте амплитуда равна 1 и поэтому - запас устойчивости по фазе.

Когда фаза равна , то - запас устойчивости по амплитуде.

Для устойчивости САУ необходимо, чтобы на

Синтез САУ с помощью ЛАЧХ

проводится следующим образом:

САУ представляют

В входят объект и известные элементы регулятора, например, измерительные, исполнительные устройства.

- корректирующее устройство, которое надо определить в процессе синтеза.

Тогда передаточная функция разомкнутой системы

Здесь - передаточная функция САУ, динамика которой удовлетворяет требованиям, предъявляемым к проектируемой системе.

Тогда в логарифмическом масштабе

.

Для минимально-фазовых САУ вид ЛАЧХ полностью определяет переходный процесс и не надо рассматривать фазо-частотную характеристику.

Минимально-фазовые звенья (системы) – такие, у которых корни числителя и знаменателя расположены в левой полуплоскости. Таким образом, передаточная функция минимально-фазовой системы не должна иметь нулей и полюсов в левой полуплоскости.


По виду можно записать передаточную функцию корректирующего звена. В данном случае она будет иметь вид:

.

В литературе приводятся таблицы, связывающие вид с

и с соответствующими схемами корректирующих устройств, реализующих эти . Приведенная выше может быть реализована в виде следующей корректирующей цепочки:


 

Здесь и мы знаем.

По графику определяем и , .

- отсюда находим .

По графику определяем .

 

= - отсюда определяем .

= - отсюда определяем .

- отсюда определяем .

отсюда определяем .

- отсюда определяем .

Определив параметры корректирующего звена, вводим его в систему и моделируем САУ, получаем переходный процесс. Если он не устраивает – меняем параметры звена.

Требования к .

Желаемая ЛАЧХ разомкнутой системы строится из общих требований к системе:

1. точность ( определяет коэффициент усиления),

2. порядок астатизма,

3. время переходного процесса,

4. перерегулирование.

 


1. должно пересекать ось частот в точке , обеспечивающей заданное время переходного процесса

.

А можно по другому:

, - находится из номограмм, определяющих зависимость , здесь - перерегулирование.

Например,

2. Для того, чтобы САУ была устойчивой, должна пересекать ось частот с наклоном - 20 дб/дек.

3.Для обеспечения заданного

4.Среднечастотную часть характеристики надо делать как можно шире. Чем больше диапазон , тем ближе процесс к экспоненциальному.

Среднечастотная часть в основном и определяет качество переходного процесса.

Низкочастотная часть определяет точность процесса управления.

Существует и другой способ определения конечных точек центрального отрезка:

Запас устойчивости по фазе в точке при , определяемый по ЛФЧХ, должен быть не меньше

Запас устойчивости по модулю (по амплитуде) в точке L2 выбирается в зависимости от перерегулирования :


Сопряжение центрального отрезка ЛАЧХ с низкочастотной частью производится прямой с наклоном - 40 дб/дек или – 60 дб/дек.

Высокочастотная часть, чтобы не усложнять корректирующее устройство, выбирают аналогичной исходной ЛАЧХ.

После построения надо проверить запас устойчивости по фазе. (на )

К сожалению, этот метод синтеза не гарантирует требуемого качества переходного процесса.

Порядок расчетов при синтезе САУ с последовательным

корректирующим устройством

1. Строится ЛАЧХ неизменной части САУ (без корректирующего уст-

ройства) .

2.По заданным требованиям к качеству строится желаемая ЛАЧХ .

3. По строится соответствующая ЛФЧХ.

4. Определяются запасы устойчивости по амплитуде и фазе.

5. Путем вычитания из находят ЛАЧХ корректирующего устройства .

6.По выбирают его технический аналог.

7. Если технический аналог отличается, надо скорректировать с учетом технического аналога.

Если получен хороший результат, то решение задачи синтеза заканчивается. Если результат не удовлетворяет выбирается другой аналог.

Синтез САУ методом корневых годографов

Качество проектируемой САУ с точки зрения быстродействия и запаса устойчивости может характеризоваться расположением корней числителя и знаменателя передаточной функции замкнутой системы.

Зная корни, можно изобразить их расположение на комплексной плоскости. Корни могут быть определены расчетами с использованием стандартных программ.

 

 

Чем больше - степень устойчивости, и чем меньше - степень колебательности, тем лучше качество САУ.

При плавном изменении значения какого-либо параметра корни будут перемещаться на плоскости корней, прочерчивая некоторую кривую, которая называется траекторией корней или корневым годографом. Построив траектории всех корней , можно выбрать такое значение варьируемых параметров, которые соответствуют наилучшему расположению корней.

Пусть имеется передаточная функция замкнутой системы

.

Коэффициенты числителя и знаменателя определенным образом выражены через параметры объекта, регулятора, корректирующих устройств. Если нужно выбрать величину какого-либо параметра, то необходимо принять некоторые постоянные значения для всех остальных параметров, а для искомого параметра задавать различные числовые значения. Для каждого задаваемого значения варьируемого параметра необходимо вычислять значения корней числителя и знаменателя и строить траектории корней, по которым выбирают то значение параметра, которое обеспечивает наилучшее расположение корней.

Синтез с использованием стандартных переходных процессов

(метод стандартных коэффициентов)

Частный способ использования этого метода – диаграмма Вышнеградского для систем третьего порядка.

Стандартные переходные процессы строятся в нормированном виде при единичном входном воздействии по безразмерному времени , где - среднегеометрический корень характеристического уравнения, определяющего быстродействие системы ( не степень устойчивости).

.

Пусть все корни вещественные и равные.

Тогда характеристическое уравнение

(1)

Здесь - коэффициенты бинома Ньютона или биноминальные коэффициенты, которые определяются из треугольника Паскаля.

Коэффициенты имеют вид:

Порядок уравнения Коэффициенты
n=1 1
n=2 1,2,3
n=3 1,3,3,1
n=4 1,4,6,4,1
n=5 1,5,10,10,5,1

 

Например. n=5, заданное tпп=3.По графику (ниже) находим, что .

Тогда

Тогда передаточная функция, обеспечивающая tпп=3 будет иметь вид:

 

 

Как проводится синтез с использованием этого метода:

1. Выбирается приемлемый вид стандартного переходного процесса.

2. По нему определяется , из которого находится

3. По , n и коэффициентам бинома Ньютона ( из таблицы) находят коэффициенты передаточной функции.

4. Введением корректирующих устройств и выбором других параметров регулятора добиваются, чтобы коэффициенты передаточной функции системы равнялись коэффициентам

Синтез линейных САУ путем выделения границ устойчивости и границ заданной степени устойчивости

Выделив методом Д-разбиения область устойчивости, мы должны выбирать рабочую точку (определяемую параметрами системы) внутри этой области. Однако разным точкам будет соответствовать разное распределение корней характеристического уравнения, а следовательно, и разный характер переходного процесса. Хотелось бы иметь хороший переходный процесс.

Известно, что длительность переходного процесса определяется ближайшим к мнимой оси корнем.

 

. Если нам задано требуемое время переходного процесса , то мы можем определить . Если корни будут расположены левее , то длительность переходного процесса будет меньше заданного .

С помощью метода Д-разбиения можно отобразить на комплексную плоскость не только мнимую ось, но и границу заданной степени устойчивости

 

Выбирая рабочую точку внутри области , будем иметь длительность переходного процесса , меньше заданного .

Для построения границы заданной степени устойчивости в характеристическое уравнение

(1)

надо подставить

Тогда

(2)

Преобразуем (2):

(3)

В уравнении (3) коэффициенты являются функциями и .

Если в уравнении (3) параметры, в плоскости которых хотим построить границу заданной степени устойчивости, входят в характеристическое уравнение линейно независимо, то к уравнению (3) можно применить рассмотренный раньше метод Д- разбиения. Выделенная граница будет линией заданной степени устойчивости.

 



<== предыдущая лекция | следующая лекция ==>
Повышение точности САУ | Элементы теории нелинейных САУ


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.158 сек.