русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Критерии согласия


Дата добавления: 2014-05-29; просмотров: 669; Нарушение авторских прав


На практике часто возникает необходимость произвести оценку близости эмпирических частот к теоретическим. Такую оценку можно произвести с помощью критериев близости, называемых критериями согласия. Наиболее часто применяется для этих целей – критерий согласия Пирсона («хи»- квадрат), который рассчитывается по формуле:

где f – эмпирические частоты,

- теоретические частоты.

Оценка близости эмпирических частот к теоретическим определяется по вероятности достижения данной величины Р( ) при случайных отклонениях частот. Если вероятность Р( ) значительно отличается от нуля (больше, чем 0,05), то отклонения эмпирических частот от теоретических можно считать случайными. Если Р( )<0,05, то отклонения нельзя считать случайными, а эмпирическое и теоретические распределения принципиально друг от друга отличаются.

Величина зависит не только от отклонений фактических частот от теоретических, но и от количества групп, на которые разбита совокупность, поэтому таблицы критических значений рассчитаны для различных степеней свободы варьирования эмпирических частот (приложение ). Для нормального распределения число степеней свободы К=n-3, где n – число групп.

Рассмотрим и оценим на примере близость эмпирических и теоретических распределений. Турфирма в течение месяца реализовала 50 путевок. Объем дневной реализации путевок распределился следующим образом (табл.7):

 

Таблица 7

Число путевок, реализуемых в течение дня Фактическая реализация   f Теоретическая реализация       f-     (f- )2  
до 3 7 и более   -5 -1 0,25 0,75 0,22 2,08 0,25
Всего: - - 3,55

 



Таким образом: К=5-3=2.

По таблице критических значений (приложение ) определяем вероятность Р( , что значительно превышает 0,05. Это означает, что отклонения фактических частот от эмпирических можно считать случайными, а само распределение реализации путевок близко к нормальному распределению.

 

 

Приложение 1



<== предыдущая лекция | следующая лекция ==>
Блок 17. Методы регрессионно-корреляционного анализа связи показателей | Основные формулы


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.221 сек.