русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Блок 8. Показатели вариации


Дата добавления: 2014-05-29; просмотров: 666; Нарушение авторских прав


Различие индивидуальных значений признака внутри изучаемой совокупности называется вариацией признака. Колеблемость отдельных значений характеризуют показатели вариации. Различают вариацию признака случайную и систематическую. Анализ вариации позволяет оценить ее характер и определить насколько однородной является изучаемая совокупность и насколько характерной является ее средняя величина для данной совокупности.

Выделяют абсолютные и средние показатели вариации. Наиболее простой – размах вариации (R) – разность между наибольшим и наименьшим значением признака в распределении: R= .

Для получения обобщенной характеристики отклонений от средней рассчитывают среднее линейное отклонение для несгруппированных данных и для вариационного ряда показатель учитывается без знака этих отклонений.

На практике вариацию чаще оценивают с помощью показателя дисперсии в варианте без частот и

Если из дисперсии извлечь корень квадратный, то получится еще один показатель вариации – среднее квадратическое отклонение:

в варианте без частот и в варианте с частотами.

Коэффициент осцилляции характеризует относительную колеблемость крайних значений признака вокруг средней:

Относительное линейное отклонение характеризует долю усредненного значения абсолютных отклонений от средней величины:

Наиболее распространенный показатель колеблемости, который дает обобщающую характеристику – коэффициент вариации:

Рассмотрим пример, где оценивается вариация стажа работы по специальности работников двух турфирм:

1-я 2-я

1 4

2 4

3 5

4 5

4 5

9 7

10 7

12 7

45 лет 45 лет

Проведем предварительные расчеты:

№ пп Стаж (лет)     Стаж      
-4,6 -3,6 -2,6 -1,6 -1,6 3,4 4,4 6,4 21,16 12,96 6,76 2,56 2,56 11,56 19,36 40,96 -1,6 -1,6 -0,6 -0,6 0,4 1,4 1,4 1,4 2,56 2,56 0,36 0,36 0,16 1,96 1,96 1,96
- 117,88 - 11,88

 



Сопоставим показатели вариации стажа работников у двух турфирм.

1-я фирма 2-я фирма

 

При одинаковых средних величинах стажа работников фирм вариация признака в первой фирме в три раза выше, чем в первой.

Преобразование формулы среднего квадратического отклонения приводит ее к виду , что делает ее удобнее для практических расчетов. Этот показатель широко применяется для расчетов показателей вариации в различных отраслях знания и техники. Среднее квадратическое отклонение показывает, на сколько в среднем отклоняются конкретные варианты от среднего их значения.

Дисперсия альтернативного признакахарактеризует вариацию альтернативных признаков. Альтернативными признаками являются признаки, которыми обладают одни единицы изучаемой совокупности и не обладают другие. Например, в фирме работают мужчины и женщины, доля мужчин (р) и доля женщин (q) образуют целый коллектив сотрудников фирмы: p +q = 1. Средняя величина для альтернативных признаков равна а дисперсия . Если на фирме работает 15 мужчин и 20 женщин, то р= а , следовательно дисперсия альтернативного признака Максимальное значение дисперсии альтернативного признака равно 0,25, оно получается при р=0,5.

Правило сложения дисперсий. Если совокупность варьирующих элементов подразделить на несколько групп, то можно выделить: общую дисперсию ( ), внутригрупповую дисперсию ( ), среднюю из внутригрупповых дисперсий ( ), межгрупповую дисперсию ( ).

Общая дисперсия характеризует колеблемость признака во всей изучаемой совокупности и рассчитывается по формуле:

, где - общая средняя для всей совокупности.

Внутригрупповая дисперсия характеризует колеблемость признака внутри группы и рассчитывается по формуле:

, где - групповая средняя.

Средняя из внутригрупповых характеризует внутригрупповую колеблемость вокруг внутригрупповых средних и рассчитывается как средняя величина из внутригрупповых дисперсий:

, где - дисперсии отдельных групп, а f - численность отдельных групп.

Межгрупповая дисперсия показывает вариацию групповых средних вокруг общей средней, измеряет вариацию изучаемого признака под влиянием признака - фактора (группировочного признака) и рассчитывается по формуле:

, где и - средние и численности по отдельным группам.

Между всеми приведенными дисперсиями существует взаимосвязь, которая называется правилом сложения дисперсий – общая дисперсия равна сумме средней из внутригрупповых дисперсий и межгрупповой дисперсии:

.

Логика этого правила следующая: общая дисперсия, возникающая под влиянием всех факторов, должна быть равна сумме дисперсий, возникающих под влиянием всех прочих факторов, и дисперсии возникающей за счет фактора группировки. Зная два вида дисперсий, всегда можно определить или проверить правильность расчета третьего вида дисперсии. Например, имеются данные по среднедневной выработке сотрудников фирмы с различным стажем работы:

Группы сотрудников по стажу Число сотрудников (f) Средняя дневная выработка (т. руб.) Дисперсия выработки
До 5 лет
Более 5 лет

т. рублей

, следовательно: .

В статистике применяется показатель, представляющий собой долю межгрупповой дисперсии в общей дисперсии, который показывает, какая часть общей вариации изучаемого признака обусловлена вариацией группировочного признака. Это коэффициент детерминации, рассчитываемый по формуле: .

Если извлечь корень квадратный из коэффициента детерминации, получаем новый показатель, который носит название корреляционное отношение:

.



<== предыдущая лекция | следующая лекция ==>
Блок 7. Структурные средние | Блок 9. Изучение формы распределения


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.055 сек.