русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Геометрический подход к понятию вероятности


Дата добавления: 2014-05-19; просмотров: 2268; Нарушение авторских прав


 

Пусть попадание в область G точки, брошенной наугад, является достоверным событием. Рассмотрим область g, лежащую внутри области G, и обозначим через A событие – попадание точки, брошенной наугад в область g.

G
Определение. Вероятность события A равна отношению мер областей и и не зависит ни от места расположения области g внутри области G, ни от формы области g. Если меры областей g и G в общем случае обозначать mes g и mes G соответственно, то вероятность события A равна:

g
(3.9)

Замечание. В том случае, когда рассматриваются трехмерные области, то вероятность попадания точки, брошенной наугад в область g, равна отношению их объемов, если же области двухмерные, то отношению их площадей, а если одномерные, то отношению их длин.

Пример 3.26.Стрелок стреляет по мишени. Пусть попадание в мишень является достоверным событием. Какова вероятность попадания в область мишени, соответствующую 10 баллам, если её площадь равна 1 кв. ед., а площадь всей мишени – 10 кв. ед.?

Полагая, что события, состоящие в попадании в определенную точку мишени, равновероятны, тем не менее использовать классический подход к понятию вероятности в данной ситуации невозможно, т. к. невозможно подсчитать как количество благоприятных исходов, равное числу точек области, соответствующей десяти очкам, так и количество всех элементарных исходов, соответствующих числу всех точек мишени. Следовательно, для решения данной задачи необходим другой подход к понятию вероятности – геометрический.

Пусть событие A состоит в попадании точки, брошенной наугад в область g, тогда в соответствии с (3.9) имеем:

Пример 3.27. На отрезке АВ = 15 см произвольным образом выделен отрезок MN = 3 см. На отрезке АВ случайным образом отмечается точка X. Какова вероятность попадания точки X на отрезок MN?



Обозначим через A – попадание точки X на отрезок MN. Используя геометрический подход к определению понятия вероятности, получим:

Пример 3.28.Пусть событие A – случайным образом отмеченная на отрезке АВ точка X совпадет с его серединой. Какова вероятность точки, брошенной наугад, попасть в точку Х, если длина отрезка АВ равна 10.

Для нахождения вероятности события A используем геометрический подход к определению понятия вероятности. Заметим, что в математике принято считать площадь точки равной нулю, следовательно, и ее «длина» также равна нулю. Учитывая это замечание, получим:

Замечание. В предыдущей задаче вероятность события A – попадания точки наугад в середину отрезка АВ – равна нулю, как, впрочем, и вероятность попадания в любую другую точку отрезка. Однако такие события не являются невозможными.

Таким образом, как для статистической вероятности, так и для геометрической вероятности утверждение: «Если событие невозможное, то его вероятность равна нулю» является всегда истинным, а обратное ему утверждение: «Если вероятность события равна нулю, то оно является невозможным» – нет.

3.33. На отрезке АВ = 12 см произвольным образом выделен отрезок MN = 2 см. На отрезке АВ случайным образом отмечается точка X. Какова вероятность попадания точки X на отрезок: а) AM; б) AN; в) MN; г) MB; д) AB?

3.34. Внутри квадрата со стороной 10 см выделен круг радиусом 2 см. Случайным образом внутри квадрата отмечается точка. Какова вероятность того, что она попадет в выделенный круг?

3.35. Поверхность рулетки разделена на секторы следующим образом: равные секторы 1 и 2 занимают половину площади круга, а вторая его половина разделена на три равных сектора 3, 4 и 5.

Найти вероятность того, что после раскручивания стрелка рулетки случайным образом остановится в секторах:

а) 1;

б) 3;

в) 1 или 2;

г) 4 или 5;

д) 1 или 5;

е) с четным номером;

ж) с нечетным номером;

з) с номером не менее 3-х.



<== предыдущая лекция | следующая лекция ==>
Решение вероятностных задач с помощью комбинаторики | Аксиоматическое определение понятия вероятности


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.074 сек.