Определение. Числовой ряд называется сходящимся, если
где частичная сумма ряда;
S − сумма ряда.
В противном случае ряд называется расходящимся.
2.91. Записать формулу общего члена ряда:
2.92. Найти сумму числового ряда:
1) 2) 3)
Достаточный признак расходимости ряда
Если то ряд расходится.
Пример 2.20.
Ряд расходится по достаточному признаку расходимости, т. к.
Признаки сходимости рядов с положительными членами:
1. Признак сравнения.
Пусть и − ряды с положительными членами. Если
то эти ряды сходятся или расходятся одновременно.
2. Признак Даламбера.Пусть
Если l < 1, то ряд сходится.
Если l > 1, то ряд расходится.
3. Радикальный признак Коши. Пусть
Если l < 1, то ряд сходится.
Если l > 1, то ряд расходится.
4. Интегральный признак Коши.Пусть f(x) − непрерывная, убывающая и положительная на промежутке [1; ∞) функция. Тогда ряд сходится (расходится), если сходится (расходится) интеграл
Пример 2.21.
Исследовать на сходимость ряд:
Решение.
1. необходимо применить один из признаков сходимости положительных рядов – признак сравнения.
При ~ ~ сравним исходный ряд с расходящимся рядом .
исходный ряд расходится.
2. Применим признак Даламбера (найдем ):
ряд сходится.
3. Применим радикальный признак Коши (найдем ):
ряд расходится.
4. Применим интегральный признак Коши. Функция непрерывная, убывающая и положительная на промежутке [1; ∞).
Интеграл сходится, следовательно, и ряд сходится.
Замечание. С помощью интегрального признака Коши можно доказать, что ряд сходится при р > 1 и расходится при р ≤ 1.
2.93. Исследовать ряд на сходимость:
2) 3)
5) 6) 7) 8)
17) 18) 19) 20)
2.94. Исследовать на абсолютную и условную сходимость ряд: