русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Исследование функции на монотонность, экстремумы и выпуклость. Асимптоты графика функции


Дата добавления: 2014-05-19; просмотров: 4442; Нарушение авторских прав


Определение.Критической точкойфункции у = f(х) называется точка в которой производная равна нулю или не существует.

Теорема. Если в промежутке (а; b) производная положительна/отрицательна, то в этом промежутке функция возрастает/убывает.

Теорема. Если при переходе через критическую точку производная меняет знак с «+» на «−» (с «−» на «+»), то − точка максимума (минимума) функции

Определение. Функция называется выпуклой вверх(вниз) в промежутке (а; b), если в этом промежутке точки графика лежат под (над) касательными, построенными в этих точках. Точкой перегиба называется точка графика функции, которая делит его на части с разными направлениями выпуклости.

Пример 2.3.

Исследовать функцию на монотонность и экстремумы, выпуклость.

Решение.

1. Исследуем функцию на монотонность и экстремумы.

Сделаем рисунок (рис. 2.1).

1,5
y′
x
+
y

 

 


Рис. 2.1. Исследование функции на монотонность и экстремумы

х = 1,5 – точка минимума, ymin =

2. Исследуем функцию на выпуклость.

Сделаем рисунок (рис. 2.2).

y′′
x
+
y
вып. вниз
вып. вверх
вып. вниз

Рис. 2.2. Исследование функции на выпуклость

Вычислим ординаты точек перегиба графика:

Координаты точек перегиба: (0; 0), (1; −1).

2.32. Исследовать функцию на монотонность и экстремумы:

1) 2) 3)

4) 5) 6)

2.33. Найти наименьшее и наибольшее значенияфункции:

1) на промежутке [2; 4];

2) на промежутке [−1; 1];

3) на промежутке [−4; 4];

4) на промежутке [−2; 1].

2.34. Издержки производства С (у. е.) зависят от объема выпускаемой продукции х (ед.): Найти наибольшие издержки производства, если х изменяется на промежутке [2; 7]. Найти значение х, при котором прибыль будет максимальной, если выручка от реализации единицы продукции равна 15 у. е.



2.35. Требуется выделить прямоугольную площадку земли в 512 м2, огородить ее и разделить забором на три равные части параллельно одной из сторон площадки. Каковы должны быть размеры площадки, чтобы на ограждение пошло наименьшее количество материала?

2.36. При заданном периметре прямоугольного окна найти такие его размеры, чтобы оно пропускало наибольшее количество света.

2.37. Найти максимум прибыли, если доход R и издержки C определяются формулами: где х − количество реализованного товара.

2.38. Зависимость объема выпуска продукции W от капитальных затрат К определяется функцией Найти интервал изменения К, на котором увеличение капитальных затрат неэффективно.

2.39. Функция издержек имеет вид Доход от реализации единицы продукции равен 200. Найти оптимальное для производителя значение выпуска продукции.

2.40. Зависимость объема выпуска продукции (в денежных единицах) от капитальных затрат определяется функцией Найти интервал значений , на котором увеличение капитальных затрат неэффективно.

2.41. Считается, что увеличение реализации от затрат на рекламу (млн руб.) определяется соотношением Доход от реализации единицы продукции равен 20 тыс. руб. Найти уровень рекламных затрат, при котором фирма получит максимальную прибыль.

2.42. Доход от производства продукции с использованием единиц ресурса составляет величину Стоимость единицы ресурса – 10 ден. ед. Какое количество ресурса следует приобрести, чтобы прибыль была наибольшей?

2.43. Функция издержек имеет вид Доход от реализации единицы продукции равен 50. Найти максимальное значение прибыли, которое может получить производитель.

2.44. Зависимость дохода монополии от количества выпускаемой продукции определяется как Функция издержек на этом промежутке имеет вид Найти оптимальное для монополии значение выпуска продукции.

2.45. Цена на продукцию монополии-производителя устанавливается в соответствии с отношением, идентифицируемым как . При каком значении выпуска продукции доход от ее реализации будет наибольшим?

2.46. Функция издержек имеет следующий вид при при . В настоящий момент уровень выпуска продукции При каком условии на параметр p фирме выгодно уменьшить выпуск продукции, если доход от реализации единицы продукции равен 50?

2.47. Найти точки перегиба и интервалы выпуклости графика функции:

1) 2) ; 3)

4) 5) 6) .

 

2.48. Найти асимптоты графика функции:

Указание. Вертикальнаяасимптотаимеет уравнение х = а, если хотя бы один из односторонних пределов функции в точке х = а равен ∞.

Наклоннаяасимптота имеет уравнение

где



<== предыдущая лекция | следующая лекция ==>
Дифференциал функции | Общая схема исследования функции и построения ее графика


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.559 сек.