русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Производная и дифференциал


Дата добавления: 2014-05-19; просмотров: 979; Нарушение авторских прав


Определение. Производной функции f(х) называется предел отношения приращения функции к приращению аргумента при ∆х стремящемся к нулю, если этот предел существует:

 

Производные простейших функций:

1. ( )' = ; частные случаи: ; ( )' = .

2. ( )' = ; частный случай:

3. ( )' = ; частный случай: ( )' = .

4. (sinx)' = cosx. 5. (cosx)' = − sinx.

6. (tgx)' = . 7. (ctgx)' = .

8. (arcsinx)' = . 9. (arccosx)' = – .

10. (arctgx)' = . 11. (arcctgx)' = – .

 

Правила дифференцирования

1. Производная постоянной:

2. Производнаясуммы:

3. Производнаяпроизведения .

Следствие: , т. е. постоянный множитель можно вынести за знак производной.

4. Производная частного:

5. Производная сложной функции: ,

где f = f(x), g = g(x) – дифференцируемые функции.

Пусть функция заданапараметрически: Тогда ее производная равна

Примеры вычисления производных

,

11. Найти производную функции, заданной неявно:

Решение.

2.12. Найти производную функции по определению производной:

1) 2) 3)

4) 5) 6)

2.13. Найти производную функции:

1) 2) 3) 4)

5) 6) 7) 8)

9)

10)

11) 12) 13)

14) 15) 16)

17) 18) 19)

20) 21) 22)

23) 24) 25) 26) 27) 28)

29) 30) 31)

32) 33) 34)

2.14. Найти производную функции и вычислить ее значение при x = x0:

1) 2)

2.15. Найти производные функций, заданных неявно:

1) 2)

3) 4)

2.16. Найти производную n-го порядка функций:

1) 2)

3) 4)

 



<== предыдущая лекция | следующая лекция ==>
Непрерывность функции в точке | Применение производной в экономике


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 1.827 сек.