Общая цель моделирования подчинена цели любых естественно-научных исследований – прогнозировать результаты предстоящих экспериментов (в том числе результаты эксплуатации любых устройств и систем).
1. Обеспечить поддержку принятия решений при решении тактических и стратегических задач управления. Существует иерархия задач управления технологическими комплексами. На верхнем уровне решаются задачи планирования производства, материально-технического снабжения и реализации продукции. На нижележащих уровнях иерархии решаются задачи распределения программы выпуска продукции на весь плановый период, задачи календарного планирования и текущего управления. Этой иерархии задач соответствует иерархия математических моделей.
Успех управления в значительной мере зависит от возможности и своевременности использования информации на всех организационных уровнях.
Стратегические задачи связаны с созданием новых или реконструкцией существующих объектов. Тактические задачи связаны с изменением технологических режимов и решаются при условии, что структура объекта сохраняется.
Например, математические модели, поддерживающие решения стратегических задач, позволяют прогнозировать развитие проектируемого предприятия и разрабатывать меры, направленные на предотвращение, ликвидацию или ограничение опасных последствий горных работ.
Основной чертой современных информационных систем является обилие информации, вследствие чего возрастает значение ее адекватного отбора.
Совместно обрабатывая разнородную информацию (результаты экспресс-контроля, показания датчиков, результаты экспертных оценок), необходимо осуществить селекцию (отбор) той информации, которая совместима с известными закономерностями процесса, имеющими, например, вид аналитических моделей.
Качественная и количественная селекция информации позволяет повысить эффективность управления.
Таким образом, математическая модель выполняет роль связующего элемента всей информации о ходе исследуемого процесса и позволяет ответить на следующие вопросы.
Какова существующая технологическая ситуация? Ответ на этот вопрос требует интерпретации потока сообщений, поступающих от объекта, и отнесения существующей ситуации к определенному классу.
Какие ресурсы необходимы для ведения процесса на прогнозируемом интервале времени?
Как нужно изменить технологический режим для предотвращения аварийных ситуаций и оптимизации технологического режима? Ответ на последний вопрос подразумевает наличие прогнозирования развития технологической ситуации и знание соответствующих регулировочных характеристик.
2. Заменить недопустимые на реальном объекте опыты экспериментами на его модели. Модели реальных объектов издавна используются в науке и технике для проверки идей, отработки гипотез, получения экспериментального материала. Так, при проектировании карьера возникает задача определения его глубины и конечных границ. Для решения этой задачи необходима математическая модель месторождения, позволяющая из различных вариантов выбрать оптимальный, исходя из минимизации затрат на разработку всех запасов руды. При этом мы заменяем недопустимые на реальном объекте опыты вычислительными экспериментами на его модели. Необходимым условием успешности такого подхода является соответствие модели реальному объекту.
3. Свести исследование реального, “нематематического” объекта к решению математической задачи. Такое сведение открывает возможность использования для изучения реального объекта хорошо разработанного математического аппарата и мощной вычислительной техники. Необходимо отметить, что математические модели – это не только уравнения математической задачи, но и условия их применимости.
Уместно напомнить девиз британского Королевского научного общества: “Ничего словами!” Все научные положения должны основываться на математических доказательствах и подтверждаться результатами экспериментов.
Математическая модель – это всегда приближенное, упрощенное представление объекта. Отсюда следует, что моделей, характеризующих один и тот же объект с одних и тех же позиций, может быть много и можно говорить о “хороших” и “плохих” моделях с точки зрения определенных критериев.
Всякая математическая модель является схемой исследуемого явления, из которой с помощью формальной логики можно извлекать следствия, касающиеся свойств этого явления.
4. Получить эффективный инструмент исследования сложных систем. Математическое моделирование является эффективным инструментом исследования сложных систем. Один из основоположников применения математических методов в биологии А. А. Ляпунов считал, что “это единственная возможность отчетливого совместного рассмотрения ряда одновременно протекающих процессов и выбора разумного способа вмешательства в их течение, т. е. управления ими”.
5. Обобщить знания, накопленные об объекте.Модели служат как бы аккумуляторами знаний об объектах.
С помощью моделей можно имитировать функционирование и прогнозировать будущие свойства объектов или их свойства в новых, ранее не описанных ситуациях. Моделирование позволяет сократить число необходимых опытов и наблюдений и более четко интерпретировать их результаты.
Модели выполняют особую смыслообразующую роль в системе научного знания. Если модель адекватна реальному объекту, то это свидетельствует с большой вероятностью о том, что мы правильно понимаем процессы, происходящие в реальном объекте.
Создавая модель, исследователь “познает” систему, т. е. выделяет ее из окружающей среды и строит ее формальное описание в соответствии с поставленными целями, задачами и имеющимися возможностями.
Важнейшей характеристикой математической модели является ее проблемная ориентированность, т. е. математическая модель всегда ориентирована на решение определенных проблем, например, повышение стабильности качественных характеристик товарной продукции, снижение потерь, повышение надежности и т. д. Назвав проблему, мы определяем систему выходных переменных (показателей процесса).
Разнообразие целей моделирования хорошо иллюстрируется перечнем задач, связанных с бизнес-процессами, когда требуется получить описание финансовых, производственных, логистических и маркетинговых характеристик затрат, доходов, прибыли, инвестиций, производственных мощностей, каналов снабжения и сбыта, процессов, функций, информационных потоков, организационных структур и т. д.
Средства построения моделей определяются видами моделей и пристрастиями разработчика. Так, язык IDEF0 используется для описания связи функций друг с другом по входам, выходам, контролю и исполнению. Модели “сущность – связь” используют для описания параметров объекта и взаимозависимости между ними для проектирования БД. Потоковые модели (Data Flow Diagrams) предназначены для описания связей функциональной и информационной моделей – какие функции, какими потоками данных управляют.