Классификация методов нелинейного программирования
Для решения задачи нелинейного программирования было предложено много методов, которые можно классифицировать по различным признакам.
По количеству локальных критериев в целевой функции методы нелинейного программирования делятся на:
однокритериальные,
многокритериальные.
По длине вектора методы делятся на:
однопараметрические или одномерные ,
многопараметрические или многомерные .
По наличию ограничений методы нелинейного программирования делятся на:
без ограничений (безусловная оптимизация),
с ограничениями (условная оптимизация).
По типу информации, используемой в алгоритме поиска экстремума методы делятся на:
методы прямого поиска, т.е. методы, в которых при поиске экстремума целевой функции используются только ее значения;
градиентные методы первого порядка, в которых при поиске экстремума функции используются значения ее первых производных;
градиентные методы второго порядка, в которых при поиске экстремума функции наряду с первыми производными используются и вторые производные.
Ни один метод нелинейного программирования не является универсальным. В каждом конкретном случае необходимо приспосабливать применяемый метод к особенностям решаемой задачи.
2.1. Задача нелинейного программирования при ограничениях – неравенствах
Теорема Куна-Таккера. Рассмотрим случай задачи с ограничениями-неравенствами:
(2.1)
при ограничениях
, .
(2.2)
В точке минимума неравенства могут выполняться как равенства или строгие неравенства.
Ограничение называется активным в точке , если оно выполняется в ней как строгое равенство, то есть если .
Используя геометрические свойства допустимой области, найдем необходимые условия экстремума для задач минимизации с ограничениями. Для этого сначала рассмотрим случай, когда все линейны. Итак, пусть требуется найти при условии
, . (2.3)
Здесь каждое ограничение (2.3) определяет полупространство в . Допустимая область задана пересечением полупространств, определяемых неравенствами (2.3), и следовательно, является выпуклым многогранником. Вектор является нормалью к гиперплоскости, определяемой уравнением , и направлен внутрь области .
Пусть точка является точкой минимума задачи (2.1) с ограничениями (2.3). Обозначим множество индексов активных ограничений через
.
(2.4)
Например, на рис. 2.1 приведен пример минимизации с линейными ограничениями. Выберем любую допустимую точку из . Вектор направлен из внутрь области . Такой вектор будем называть входящим. Для этого вектора с учетом того, что , можно записать следующее условие:
,
или
,
(2.5)
для всех и .
Рис. 2.1.
Таким образом, входящий вектор определяет допустимое направление перемещения из точки . Но так как минимальна в точке , то при любом , удовлетворяющем (2.5), будем иметь:
, .
(2.6)
Применим теперь теорему, которая есть следствием леммы Фаркаша. Из условий (2.5), (2.6) на основании леммы Фаркаша следует, что существует множество неотрицательных скаляров , для которых
.
(2.7)
Если принять, что при (то есть для неактивных ограничений), (2.7) можно переписать в виде
.
(2.8)
Кроме того, получим, что
.
(2.9)
поскольку при , а при . Поэтому уравнения ограничений можно включить в целевую функцию следующим образом:
(2.10)
Следовательно, удовлетворяет следующим условиям:
,
(2.11)
, , .
(2.12)
При рассмотрении задачи минимизации при условиях может случиться так, что не будет существовать таких , , для которых без дополнительных предположений о природе функций были бы справедливы уравнения (2.9), (2.10), где - оптимальное решение. Эти дополнительные предположения называют условиями регулярности ограничений. В частности, в рассмотренном случае, в качестве таких условий использовали линейную независимость векторов-градиентов ограничений , .
Теорема Куна-Таккера. Выше найдены условия оптимальности (2.9), (2.10) для задачи НП с линейными ограничениями. Обобщим эти условия на случай задачи (2.1), (2.2), когда все ограничения нелинейны.
Условия оптимальности решения задачи НП формулируются в следующей теореме, имеющей исключительно важное значение в теории нелинейного программирования.
Теорема 1.1. (Куна-Таккера). Пусть функции , , имеют непрерывные частные производные на некотором открытом множестве , содержащем точку . Еслиявляется точкой минимума функциипри ограничениях , , удовлетворяющих условию регулярности в виде линейной независимости векторов , то существуют такие неотрицательные множители Лагранжа , что
,
(2.13)
, , .
(2.14)
Определим функцию Лагранжа следующим образом:
.
(2.15)
Тогда теорему Куна-Таккера можно записать в виде
,
(2.16)
,
(2.17)
.
(2.18)
Заметим, что множители Лагранжа в задаче НП с ограничениями-равенствами являются знаконеопределенными, тогда как в теореме Куна-Таккера они должны быть положительными.
Задачи нелинейного программирования самого различного физического смысла допускают геометрическую интерпретацию. Рассмотрим такую интерпретацию для наиболее наглядного и простого случая двух переменных, , - плоскость.