Математическая статистика – раздел прикладной математики, непосредственно примыкающий и основанный на теории вероятностей. Как и любая математическая теория, математическая статистика развивается в рамках некоторой модели, описывающей определенный круг реальных явлений. Чтобы определить статистическую модель и объяснить специфику задач математической статистики, напомним некоторые положения из теории вероятностей.
Математическая модель случайных явлений, изучаемых в теории вероятностей, основывается на понятии вероятностного пространства . При этом в каждой конкретной ситуации вероятность считается полностью известной числовой функцией на -алгебре , то есть для любого полностью определено число . Основной задачей теории вероятностей является разработка методов нахождения вероятностей различных сложных событий по известным вероятностям более простых (например, по известным законам распределения случайных величин определяются их числовые характеристики и законы распределения функций от случайных величин).
Однако на практике при изучении конкретного случайного эксперимента вероятность , как правило, неизвестна или известна частично. Можно только предположить, что истинная вероятность является элементом некоторого класса вероятностей (в худшем случае - класс всевозможных вероятностей, которые можно задать на ). Класс называют совокупностью допустимых для описания данного эксперимента вероятностей , а набор - статистической моделью эксперимента. В общем случае задачей математической статистики является уточнение вероятностной модели изучаемого случайного явления (то есть отыскание истинной или близкой к ней вероятности ), используя информацию, доставляемую наблюдаемыми исходами эксперимента, которые называют статистическими данными.
В классической математической статистике, изучением которой мы будем заниматься далее, имеют дело со случайными экспериментами, состоящими в проведении n повторных независимых наблюдений над некоторой случайной величиной , имеющей неизвестное распределение вероятностей, т.е. неизвестную функцию распределения . В этом случае множество всех возможных значений наблюдаемой случайной величины называют генеральной совокупностью, имеющей функцию распределения или распределенной согласно . Числа , являющиеся результатом независимых наблюдений над случайной величиной , называют выборкой из генеральной совокупности или выборочными (статистическими) данными. Число наблюдений называется объемомвыборки.
Основная задача математической статистики состоит в том, как по выборке из генеральной совокупности, извлекая из нее максимум информации, сделать обоснованные выводы относительно неизвестных вероятностных характеристик наблюдаемой случайной величины .
Под статистической моделью, отвечающей повторным независимым наблюдениям над случайной величиной , естественно, вместо понимать набор , где - генеральная совокупность, - -алгебра борелевских подмножеств из , - класс допустимых функций распределения для данной случайной величины , которому принадлежит и истинная неизвестная функция распределения .
Часто тройку называют статистическим экспериментом.
Если функции распределения из заданы с точностью до значений некоторого параметра , то есть ( - параметрическое множество), то такая модель называется параметрической. Говорят, что в этом случае известен тип распределения наблюдаемой случайной величины, а неизвестен только параметр, от которого распределение зависит. Параметр может быть как скалярным, так и векторным.
Статистическая модель называется непрерывной или дискретной, если таковыми являются все составляющие класс функции распределения соответственно.
Пример 1. Предположим, что распределение наблюдаемой случайной величины является гауссовским с известной дисперсией и неизвестным математическим ожиданием .
В этом случае статистическая модель является непрерывной и имеет вид:
, где ,
а функция распределения имеет плотность вероятностей
.
Далее для этой модели будем использовать обозначение .
Если и дисперсия неизвестна, то статистическая модель имеет вид:
, где ,
а функция распределения имеет плотность вероятностей
.
Это, так называемая, общая нормальная модель, обозначаемая .
Пример 2. Предположим, что распределение наблюдаемой случайной величины является пуассоновским с неизвестным параметром . В этом случае статистическая модель является дискретной и имеет вид:
, где ,
а функция распределения определяется вероятностями
.
Эта модель называется пуассоновской и обозначается .
Замечание: Выборка является исходной информацией для статистического анализа и принятия решений о неизвестных вероятностных характеристиках наблюдаемой случайной величины . Однако на основе конкретной выборки обосновать качество статистических выводов принципиально невозможно. Для этого на выборку следует смотреть априорно как на случайный вектор , координаты которого являются независимыми, распределенными так же как и , случайными величинами (при этом говорят, что случайные величины - копии ), и который еще не принял конкретного значения в результате эксперимента. Переход от выборки конкретной к выборке случайной будет неоднократно использоваться далее при решении теоретических вопросов и задач для получения выводов, справедливых для любой выборки из генеральной совокупности.
Основные задачи, рассматриваемые в математической статистике, можно разбить на две большие группы:
1. Задачи, связанные с определением неизвестного закона распределения наблюдаемой случайной величины и параметров в него входящих (они рассматриваются в рамках статистической теории оценивания).
2. Задачи, связанные с проверкой гипотез относительно закона распределения наблюдаемой случайной величины (решаются в рамках теории проверки статистических гипотез).