русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Статистическая модель и задачи математической статистики


Дата добавления: 2014-05-05; просмотров: 2452; Нарушение авторских прав


Математическая статистика – раздел прикладной математики, непосредственно примыкающий и основанный на теории вероятностей. Как и любая математическая теория, математическая статистика развивается в рамках некоторой модели, описывающей определенный круг реальных явлений. Чтобы определить статистическую модель и объяснить специфику задач математической статистики, напомним некоторые положения из теории вероятностей.

Математическая модель случайных явлений, изучаемых в теории вероятностей, основывается на понятии вероятностного пространства . При этом в каждой конкретной ситуации вероятность считается полностью известной числовой функцией на -алгебре , то есть для любого полностью определено число . Основной задачей теории вероятностей является разработка методов нахождения вероятностей различных сложных событий по известным вероятностям более простых (например, по известным законам распределения случайных величин определяются их числовые характеристики и законы распределения функций от случайных величин).

Однако на практике при изучении конкретного случайного эксперимента вероятность , как правило, неизвестна или известна частично. Можно только предположить, что истинная вероятность является элементом некоторого класса вероятностей (в худшем случае - класс всевозможных вероятностей, которые можно задать на ). Класс называют совокупностью допустимых для описания данного эксперимента вероятностей , а набор - статистической моделью эксперимента. В общем случае задачей математической статистики является уточнение вероятностной модели изучаемого случайного явления (то есть отыскание истинной или близкой к ней вероятности ), используя информацию, доставляемую наблюдаемыми исходами эксперимента, которые называют статистическими данными.

В классической математической статистике, изучением которой мы будем заниматься далее, имеют дело со случайными экспериментами, состоящими в проведении n повторных независимых наблюдений над некоторой случайной величиной , имеющей неизвестное распределение вероятностей, т.е. неизвестную функцию распределения . В этом случае множество всех возможных значений наблюдаемой случайной величины называют генеральной совокупностью, имеющей функцию распределения или распределенной согласно . Числа , являющиеся результатом независимых наблюдений над случайной величиной , называют выборкой из генеральной совокупности или выборочными (статистическими) данными. Число наблюдений называется объемомвыборки.



Основная задача математической статистики состоит в том, как по выборке из генеральной совокупности, извлекая из нее максимум информации, сделать обоснованные выводы относительно неизвестных вероятностных характеристик наблюдаемой случайной величины .

Под статистической моделью, отвечающей повторным независимым наблюдениям над случайной величиной , естественно, вместо понимать набор , где - генеральная совокупность, - -алгебра борелевских подмножеств из , - класс допустимых функций распределения для данной случайной величины , которому принадлежит и истинная неизвестная функция распределения .

Часто тройку называют статистическим экспериментом.

Если функции распределения из заданы с точностью до значений некоторого параметра , то есть ( - параметрическое множество), то такая модель называется параметрической. Говорят, что в этом случае известен тип распределения наблюдаемой случайной величины, а неизвестен только параметр, от которого распределение зависит. Параметр может быть как скалярным, так и векторным.

Статистическая модель называется непрерывной или дискретной, если таковыми являются все составляющие класс функции распределения соответственно.

Пример 1. Предположим, что распределение наблюдаемой случайной величины является гауссовским с известной дисперсией и неизвестным математическим ожиданием .

В этом случае статистическая модель является непрерывной и имеет вид:

, где ,

а функция распределения имеет плотность вероятностей

.

Далее для этой модели будем использовать обозначение .

Если и дисперсия неизвестна, то статистическая модель имеет вид:

, где ,

а функция распределения имеет плотность вероятностей

.

Это, так называемая, общая нормальная модель, обозначаемая .

Пример 2. Предположим, что распределение наблюдаемой случайной величины является пуассоновским с неизвестным параметром . В этом случае статистическая модель является дискретной и имеет вид:

, где ,

а функция распределения определяется вероятностями

.

Эта модель называется пуассоновской и обозначается .

Замечание: Выборка является исходной информацией для статистического анализа и принятия решений о неизвестных вероятностных характеристиках наблюдаемой случайной величины . Однако на основе конкретной выборки обосновать качество статистических выводов принципиально невозможно. Для этого на выборку следует смотреть априорно как на случайный вектор , координаты которого являются независимыми, распределенными так же как и , случайными величинами (при этом говорят, что случайные величины - копии ), и который еще не принял конкретного значения в результате эксперимента. Переход от выборки конкретной к выборке случайной будет неоднократно использоваться далее при решении теоретических вопросов и задач для получения выводов, справедливых для любой выборки из генеральной совокупности.

Основные задачи, рассматриваемые в математической статистике, можно разбить на две большие группы:

1. Задачи, связанные с определением неизвестного закона распределения наблюдаемой случайной величины и параметров в него входящих (они рассматриваются в рамках статистической теории оценивания).

2. Задачи, связанные с проверкой гипотез относительно закона распределения наблюдаемой случайной величины (решаются в рамках теории проверки статистических гипотез).

 



<== предыдущая лекция | следующая лекция ==>
МАТЕМАТИЧЕСКАЯ СТАТИСТИКА | Способы представления статистических данных.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.004 сек.