русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Определенный интеграл. Определенный интеграл как предел интегральной суммы


Дата добавления: 2014-05-05; просмотров: 2374; Нарушение авторских прав


Пусть дана функция , определенная на отрезке [a;b], где a<b. Разобъем отрезок [a;b] на частичные отрезки произвольной длины [x0;x1], [x1;x2],…, [xn-1;xn], так что x0=a, xn=b (x0<x1<…<xn). На каждом частичном отрезке выбираем произвольную точку и вычислим значения функции в каждой из этих точек . Составим произведения , где - длина частичного отрезка. Составим сумму всех таких произведений:

Эта сумма называется интегральной суммой функции на отрезке [a;b].

Обозначим частичный отрезок наибольшей длины . Будем увеличивать число разбиений отрезка [a;b] на частичные отрезки, т.е. n→∞, не изменяя длину самого отрезка [a;b]. При этом →0. Найдем при этих условиях . Предел частичной суммы, если он существует, не зависит ни от способа разбиения отрезка [a;b] на частичные отрезки, ни от выбора точек на них. Этот предел называется определенным интегралом от функции на отрезке [a;b] и обозначается:

Числа a и b называются соответственно нижним и верхним пределами интегрирования, f(x) – подынтегральная функция, f(x)dx – подынтегральное выражение, х – переменная интегрирования, [a;b] – область интегрирования.

Теорема Коши. Если функция непрерывна на отрезке [a;b], то определенный интеграл существует.

Непрерывность функции является достаточным условием ее интегрируемости. Однако, определенный интеграл может существовать и для некоторых разрывных функций, в частности, для всякой ограниченной на отрезке функции, имеющем на нем конечное число точек разрыва.

Из определения определенного интеграла следуют свойства:

- определенный интеграл не зависит от обозначения переменной интегрирования = = , так как интегральная сумма не зависит от того, какой буквой обозначить ее аргумент;

- определенный интеграл с одинаковыми пределами интегрирования равен нулю , так как длина отрезка равна нулю;



- для любого действительного числа с: , так как при этом .



<== предыдущая лекция | следующая лекция ==>
Интегрирование тригонометрических выражений | Геометрический смысл определенного интеграла. Площадь криволинейной трапеции


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.106 сек.