русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Степенная функция, умноженная на экспоненциальную функцию, зависящую от полинома второй степени


Дата добавления: 2014-05-01; просмотров: 597; Нарушение авторских прав


Пусть функция ) являетсястепенной функцией, умноженной на экспоненциальную функцию со степенью в виде полинома второй степени, т.е. ) = . Имеем ) = = 0 = 0 = 0 , откуда определяются три конечные стационарные точки: , при и = 0 при . Вторая производная ) от ) равна ) = ( + ).

Вторая производная ) в точке = 0 равна 0 при , при неопределенна, при равна , т.е. точка = 0 не является точкой экстремума для ).

Поэтому остается рассмотреть возможные значения ) в точках = и = . В зависимости от исходных данных корни и могут принимать разные значения. Имеем следующие случаи:

1. . В этом случае и являются действительными числами. Если ) , то является точкой минимума для функции ). Если ) , то является точкой максимума для функции ). Если ) = 0, то не является точкой экстремума для функции ). Эти же выводы справедливы и для точки .

2. . В этом случае и являются комплексными числами и они не являются точками экстремума для функции ).

 



<== предыдущая лекция | следующая лекция ==>
Лекция 8. 1.4. Частный случай полинома, умноженного на экспоненциальную функцию | Минимизация функции нескольких переменных без ограничений. Постановка задачи


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.004 сек.