Управление всех видов может быть либо дискретным, либо непрерывным. Непрерывное обычно используют в аналоговых устройствах (электрические машины). Дискретное или дискретно-непрерывное управление применяется как правило в цифровых устройствах (ЭВМ).
Объекты, системы и их модели
Математические модели систем управления и объектов управления.
Как отмечалось, необходимо управлять самыми различными объектами: скоростью вращения электродвигателя, температурой в печах, скоростью движения полосы в прокатном стане, толщиной полосы, линией по выпечке хлеба или производству пива и т.д. Понятно, что вербальное описание для этого не годится. Управление сводится к добавлению, уменьшению, перераспределению некоторых ресурсов, изменению величин (в большинстве случаев метрических). Т.е. управление нужно вычислить, определить количественно. Для этого необходимо иметь математические соотношения. Объект управления необходимо описать математически - разработать его математическую модель, т.е. систему математических отношений связывающих все величины, характеризующие рассматриваемый объект и представляющие интерес для решаемой задачи. Таким образом, математическая модель - это система математических соотношений, связывающих и описывающих поведение величин, полностью характеризующих изучаемый объект в необходимом смысле. Математическая модель объекта используется как при его анализе, так и синтезе системы управления им.
Очевидно, что система управления - совокупность датчиков и задающих устройств, алгоритмов обработки сигналов и определения управляющих воздействий, исполнительных устройств – также должны быть описаны в виде модели.
Таким образом, мы имеем дело всегда с математической моделью объекта и системы. Природа объектов может быть самой разной и их формальное представление - модели также будут отличаться. Для того, чтобы унифицировать методы анализа объектов и синтеза систем, их желательно классифицировать по каким-либо признакам.