Все состояния системы S можно разделить на подмножества:
SK S – подмножество состояний j = , в которых система работоспособна;
SMS – подмножество состояний z = , в которых система неработоспособна.
S = SKSM ,
SKSM = 0.
1. Функция готовности Г(t) системы определяет вероятность нахождения системы в работоспособном состоянии в момент t
где Pj(t) – вероятность нахождения системы в работоспособном j-м состоянии;
Pz(t) – вероятность нахождения системы в неработоспособном z-м состоянии.
2. Функция простоя П(t) системы
3. Коэффициент готовности kг.с. системы определяется при установившемся режиме эксплуатации (при t ). При t устанавливается предельный стационарный режим, в ходе которого система переходит из состояния в состояние, но вероятности состояний уже не меняются
Коэффициент готовности kг.с. можно рассчитать по системе (2) дифференциальных уравнений, приравнивая нулю их левые части dPi(t)/dt = 0, т.к. Pi = const при t . Тогда система уравнений (2) превращается в систему алгебраических уравнений вида:
(3)
и коэффициент готовности:
есть предельное значение функции готовности при установившемся режиме t .
4. Параметр потока отказов системы
(4)
где jz – интенсивности (обобщенное обозначение) переходов из работоспособного состояния в неработоспособное.
5. Функция потока отказов
(5)
6. Средняя наработка между отказами на интервале t
(6)
Примечание: При t , когда Pj(t = ) = Pj( ) = Pj , средняя наработка между отказами
T0= kг.с./ ,
где () = .
В качестве примера вычисления показателей надежности, рассмотрен восстанавливаемый объект, у которого поток отказов простейший (пуассоновский) с параметром потока
= = 1/ T0,
а распределение времени восстановления подчиняется экспоненциальному распределению с интенсивностью восстановления
= 1/ TВ ,
где T0 – средняя наработка между отказами;
TВ – среднее время восстановления.
P0(t) – вероятность работоспособного состояния при t;
P1(t) – вероятность неработоспособного состояния при t.
Система дифференциальных уравнений:
(7)
Начальные условия: при t = 0 P0(t = 0) = P0(0) = 1; P1(0) = 0, поскольку состояния S0 и S1 представляют полную группу событий, то
P
0
(t) +
P
1
(t) = 1.
(8)
Выражая P0(t) = 1 - P1(t), и подставляя в (7) получается одно дифференциальное уравнение относительно P1(t):
d
P
1
(t)/dt =
(1 –
P
1
(t)) -
P
1
(t).
(9)
Решение уравнения (9) производится с использованием преобразования Лапласа.
Преобразование Лапласа для вероятностей состояния Pi(t):
т. е. Pi(S) = L{Pi(t)} – изображение вероятности Pi(t).
Преобразование Лапласа для производной dPi(t)/dt:
После применения преобразования Лапласа к левой и правой частям уравнения, получено уравнение изображений:
(9)
где L{} = L{1} = /S .
При P1(0) = 0
SP1(S) + P1(S)( + ) = /S.
P1(S)( S + + ) = /S,
откуда изображение вероятности нахождения объекта в неработоспособном состоянии:
(10)
Разложение дроби на элементарные составляющие приводит к:
Применяя обратное преобразование Лапласа, с учетом:
L{f(t)} = 1/S, то f(t) = 1;
L{f(t)} = 1/( S + a), то f(t) = e-at,
вероятность нахождения объекта в неработоспособном состоянии определяется:
(11)
Тогда вероятность нахождения в работоспособном состоянии P0(t) = 1 - P1(t), равна
(12)
С помощью полученных выражений можно рассчитать вероятность работоспособного состояния и отказа восстанавливаемого объекта в любой момент t.
Коэффициент готовности системы kг.с.. определяется при установившемся режиме t , при этом Pi(t) = Pi = const, поэтому составляется система алгебраических уравнений с нулевыми левыми частями, поскольку
dPi(t)/dt = 0.
Так как kг.с есть вероятность того, что система окажется работоспособной в момент t при t , то из полученной системы уравнений определяется P0 = kг.с .