2) для определения P(A21 ) рассмотрен малый интервал ( , + d), для которого вероятность отказа ОЭ равна:
f1() d
Для получения ВО ОЭ к моменту интегрируем полученное выражение по от 0 до t.
Поскольку ВО, как функция распределения случайной наработки до отказа,
равнато
где
Вероятность события A2:
Тогда ВБР рассмотренной системы с ненагруженным резервом равна:
(1)
Аналогично, для системы с одним ОЭ и (n -1) РЭ, получается рекуррентное выражение:
(2)
где индекс (n - 1) означает, что соответствующие характеристики (ВБР и ПРО) относятся к системе, в которой включается в работу последний n-й элемент.
Выражение (2) приведено для состояния, когда к моменту отказал предпоследний (n -1) элемент системы и остался лишь один (последний) работоспособный элемент.
Принимая для рассмотриваемой системы, что наработки до отказа ОЭ и РЭ подчиняются экспоненциальному распределению с параметрами 1 и 2:
P
1
(t) = exp ( -
1
t);
P
2
(t) = exp ( -
2
t),
выражение (1) после интегрирования имеет вид:
(3)
Плотность распределения наработки до отказа системы, равна:
(4)
При кратностях резервирования k > 5 распределение наработки до отказа системы с ненагруженным резервом становится близким к нормальному независимо от законов распределения наработки, составляющих систему элементов.
При идентичных ОЭ и (n -1) РЭ и экспоненциальном распределении наработки элементов для ВБР системы с ненагруженным резервом и целой кратностью резервирования k = (n - m)/m, где m = 1:
(5)
где n – число элементов системы;
k = (n - 1)/1 = (n - 1) – кратность резервирования, при m = 1 .
ВО системы:
(6)
ПРО системы:
ИО системы:
Таким образом, распределение наработки до отказа таких систем подчиняется распределению Эрланга (гамма-распределение при целых n).
Согласно, выражению (5) проанализируем, как изменяется ВБР системы при различной кратности резервирования:
Сравнение ненагруженного и нагруженного резервирований проведено по графику Pс(t) для системы с идентичными элементами () и кратностью резервирования k = 2.
Наибольшая эффективность от использования системы с ненагруженным резервом будет при продолжительности работы РЭ не менее 1.5 T0.
При ненагруженном резерве с дробной кратностью (при m > 1) и экспоненциальном распределении наработки до отказа идентичных элементов (ИО ) расчетное выражение для Pс(t):
где k* = n – m.
Ниже рассмотрены показатели безотказности системы с ненагруженным резервированием, когда случайная наработка до отказа элементов системы подчиняется нормальному распределению с ПРО
где - число элементов системы.
Поскольку случайная наработка до отказа системы
а Ti являются независимыми случайными величинами наработки, то сумма (композиция) независимых случайных величин, каждая из которых распределена нормально, также имеет нормальное распределение с параметрами:
- математическое ожидание наработки до отказа
- дисперсия наработки до отказа
Среднее квадратичное отклонение наработки до отказа системы, определяется:
Плотность распределения случайной наработки до отказа системы при целой кратности резервирования
Показатели безотказности определяются с использованием функций f(x) и (x) для
и имеют вид:
Pс(t) = 0,5 - (x) ; Qс(t) = 0,5 + (x) .
Для системы с элементами наработка на отказ которых подчиняется экспоненциальному распределению Pi (t) = exp(-i t), можно принять Pi(t) 1 -i t, поэтому выражения ВО и ВБР:
При ненагруженном резерве ВО системы в n! раз меньше, чем при нагруженном.