русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

НАДЕЖНОСТЬ СИСТЕМЫ С НЕНАГРУЖЕННЫМ РЕЗЕРВИРОВАНИЕМ


Дата добавления: 2014-04-22; просмотров: 1355; Нарушение авторских прав




Общий анализ надежности приведен для системы, состоящей из одного основного (рабочего) и (n - 1) резервных элементов.

Допущения:

1. Время замены отказавшего элемента резервным равно 0 (t3 0).

2. Переключающее устройство подключения резервного элемента вместо отказавшего основного – абсолютно надежно.

При ненагруженном резервировании резервный элемент не может отказать, находясь в отключенном состоянии, и его показатели надежности не изменяются.

Исходные данные для расчета надежности:

· вероятность безотказной работы (ВБР) i-го элемента Pi(t).

· интенсивность отказов (ИО) i-го элемента i(t).

· математическое ожидание (МО) наработки до отказа i-го элемента T0i.

Анализ случайной наработки до отказа системы с ненагруженным резервом (рис. 1):

 

 

Рис. 1

 

МО наработки до отказа системы:

 

 

где T0i = M(Ti ) – МО наработки до отказа i-го элемента системы.

Рассмотрим систему, состоящую из основного элемента (ОЭ) и одного резервного (РЭ). ОЭ и РЭ являются невосстанавливаемыми объектами.

Рис. 2

 

События, соответствующие работоспособности системы за наработку (0, t):

A = {безотказная работа (БР) системы за наработку (0, t)};

A1 = {БР ОЭ за наработку (0, t)};

A2 = {отказ ОЭ в момент t >, включение (t3 = 0) РЭ и БР РЭ на интервале (t – )}.

Событие A = A1 A2, поэтому ВБР системы к наработке t (за наработку (0, t)), определяется:

 

P(A) = P(A1 ) + P(A2 ) ,

 

где P(A) = Pс(t);

P(A1 ) – ВБР ОЭ к наработке t, P(A1 ) = P1 (t);

P(A2 ) = Pр (t) – вероятность отказа ОЭ и БР РЭ после отказа ОЭ.

При известном законе распределения наработка до отказа ОЭ вычисление P1 (t) не представляет сложности.

Событие A2 является «сложным» событием, включающим в себя простые:

A21 = {отказ ОЭ при < t (вблизи рассматриваемого момента )};



A22 = {БР РЭ с момента до t, т. е. в интервале (t - )}.

Событие A2 осуществляется при одновременном выполнении событий A21 и A22:

 

A2 = A21A22 .

 

События A21 и A22 являются зависимыми, поэтому вероятность события A2

 

P(A2 ) = P(A21 ) · P(A22| A21 ) .

 

Соответствующие вероятности:

1) P(A22| A21 ) = P2 (t - ) – ВБР РЭ в интервале (t - ),

где P2 (t) – ВБР РЭ к наработке t.

2) для определения P(A21 ) рассмотрен малый интервал ( , + d), для которого вероятность отказа ОЭ равна:

 

f1() d

 

Для получения ВО ОЭ к моменту интегрируем полученное выражение по от 0 до t.

Поскольку ВО, как функция распределения случайной наработки до отказа,

равнато

 

 

где

 

Вероятность события A2:

 

 

Тогда ВБР рассмотренной системы с ненагруженным резервом равна:

 

 
(1)
 
 

 

 

Аналогично, для системы с одним ОЭ и (n -1) РЭ, получается рекуррентное выражение:

 

 
(2)
 
 
где индекс (n - 1) означает, что соответствующие характеристики (ВБР и ПРО) относятся к системе, в которой включается в работу последний n-й элемент. Выражение (2) приведено для состояния, когда к моменту отказал предпоследний (n -1) элемент системы и остался лишь один (последний) работоспособный элемент. Принимая для рассмотриваемой системы, что наработки до отказа ОЭ и РЭ подчиняются экспоненциальному распределению с параметрами 1 и 2:  
P
1
(t) = exp ( -
1
t);
 
P
2
(t) = exp ( -
2
t),
 
 

 

выражение (1) после интегрирования имеет вид:

 

 
(3)
 
 

 

Плотность распределения наработки до отказа системы, равна:

 

 
(4)
 
 

 

При кратностях резервирования k > 5 распределение наработки до отказа системы с ненагруженным резервом становится близким к нормальному независимо от законов распределения наработки, составляющих систему элементов.

При идентичных ОЭ и (n -1) РЭ и экспоненциальном распределении наработки элементов для ВБР системы с ненагруженным резервом и целой кратностью резервирования k = (n - m)/m, где m = 1:

 

 
(5)
 
 

 

где n – число элементов системы;

k = (n - 1)/1 = (n - 1) – кратность резервирования, при m = 1 .

ВО системы:

 

 
(6)
 
 

 

ПРО системы:

 

 

ИО системы:

 

 

Таким образом, распределение наработки до отказа таких систем подчиняется распределению Эрланга (гамма-распределение при целых n).

Согласно, выражению (5) проанализируем, как изменяется ВБР системы при различной кратности резервирования:

 

 

Сравнение ненагруженного и нагруженного резервирований проведено по графику Pс(t) для системы с идентичными элементами () и кратностью резервирования k = 2.

 

 

Наибольшая эффективность от использования системы с ненагруженным резервом будет при продолжительности работы РЭ не менее 1.5 T0.

При ненагруженном резерве с дробной кратностью (при m > 1) и экспоненциальном распределении наработки до отказа идентичных элементов (ИО ) расчетное выражение для Pс(t):

 

 

где k* = n – m.

Ниже рассмотрены показатели безотказности системы с ненагруженным резервированием, когда случайная наработка до отказа элементов системы подчиняется нормальному распределению с ПРО

 

 

где - число элементов системы.

Поскольку случайная наработка до отказа системы

 

 

а Ti являются независимыми случайными величинами наработки, то сумма (композиция) независимых случайных величин, каждая из которых распределена нормально, также имеет нормальное распределение с параметрами:

- математическое ожидание наработки до отказа

 

 

- дисперсия наработки до отказа

 

Среднее квадратичное отклонение наработки до отказа системы, определяется:

 

 

Плотность распределения случайной наработки до отказа системы при целой кратности резервирования

 

 

Показатели безотказности определяются с использованием функций f(x) и (x) для

 

 

и имеют вид:

 

Pс(t) = 0,5 - (x) ; Qс(t) = 0,5 + (x) .

 

 

Для системы с элементами наработка на отказ которых подчиняется экспоненциальному распределению Pi (t) = exp(-i t), можно принять Pi(t) 1 -i t, поэтому выражения ВО и ВБР:

 

 

При ненагруженном резерве ВО системы в n! раз меньше, чем при нагруженном.

 

<== предыдущая лекция | следующая лекция ==>
НАДЕЖНОСТЬ СИСТЕМ С НАГРУЖЕННЫМ РЕЗЕРВИРОВАНИЕМ | НАДЕЖНОСТЬ СИСТЕМ С ОБЛЕГЧЕННЫМ И СО СКОЛЬЗЯЩИМ РЕЗЕРВОМ


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.265 сек.