русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

НАДЕЖНОСТЬ СИСТЕМ С НАГРУЖЕННЫМ РЕЗЕРВИРОВАНИЕМ


Дата добавления: 2014-04-22; просмотров: 912; Нарушение авторских прав


Рассматривается система, состоящая из одного основного и (n - 1) резервных элементов.

При условии, что отказы элементов независимы, отказ системы происходит только при отказе всех n элементов.

 

Структура системы

 

 

Случайная наработка до отказа:

 

 

(система работоспособна до тех пор, пока работоспособен хотя бы один элемент).

Поскольку отказ системы есть событие, которое заключается в одновременном появлении событий – отказах всех элементов, то

· вероятность отказа (ВО):

 

· вероятность безотказной работы (ВБР):

 

· математическое ожидание (МО) наработки до отказа:

 

При идентичных элементах системы, т. е. P1(t) = … = Pn(t)

 

· ВБР:

 

· ВО:

 

· МО наработки до отказа:

 

Для системы с экспоненциальной наработкой до отказа каждого из n элементов:

 

Pi(t) = exp(- i t),

 

где i = const показатели безотказности:

 

 

Таким образом, при нагруженном резервировании экспоненциальное распределение наработки до отказа не сохраняется.

При идентичных n элементах системы МО наработки до отказа:

 

 

При большом n (n ), T 1/ ·( ln n + c), где c = 0.577….

При неидентичных элементах:

 

Для системы с n идентичными элементами P1(t) = … = Pn(t) решаются задачи оптимизации (в различных постановках).

1. Определение числа n элементов системы, при котором вероятность отказа (ВО) системы Qс(t) не будет превосходить заданной Qс.

Поскольку Qс(t) = Qin(t), то условие задачи

 

Qin(t) Qс(t).

 

Из приведенного неравенства определяется минимально необходимое число элементов:

 

 

2. Определение надежности n элементов системы из условия, чтобы ВО не превышала заданную .



Из условия Qin(t) Qс(t), находим ВО I и ВБР Pi(t) 1 - Qi(t).

 

Надежность систем с ограничением по нагрузке

 

Для некоторых систем условия работы таковы, что для работоспособности системы необходимо, чтобы по меньшей мере r элементов из n были работоспособны.

Т. е. число необходимых рабочих элементов – r, резервных – (n - r).

Отказ системы наступает при условии отказа (n – r + 1) элементов.

Если при изменении числа находящихся в работе элементов не наблюдается перегрузки, влияющей на возможность возникновения отказа, то отказы можно считать независимыми.

ВБР такой системы определяется с помощью биномиального распределения.

Для системы, сохраняющей работоспособность при функционировании r из n элементов, ВБР определяется как сумма r, (r + 1), … , (n – r) элементов:

 

 

где

Для идентичных элементов с экспоненциальной наработкой Pi(t) = exp(- i t), i = const (1 = … = i = … = n) ВБР:

 

 

Зависимость надежности системы от кратности резервирования

 

При целой кратности k (r = 1, n = k + 1) для системы с идентичными элементами и экспоненциальной наработкой до отказа:

· ВБР системы:

 

Pс(t) = 1 – (1 - exp(- t))k+1;

 

· ПРО системы:

 

fс(t) = - dPс(t)/ dt = (k + 1) (1 - exp(- t))k exp(- t);

 

· ИО системы:

 

Полагая элементы системы высоконадежными, т. е. t << 1 (P(t) 1 - t), получены упрощенные выражения:

 

· ВБР системы:

Pс(t) 1 – ( t))k+1;

· ПРО системы:

fс(t) (k + 1) k+1 tk;

· ИО системы:

 

но поскольку t << 1, то (t)k+1 0, поэтому ИО системы:

 

с (t) (k + 1) k+1 tk = n · n · tn-1,

 

где n = k + 1.

Полученное выражение с (t) свидетельствует о том, что при = const элементов, ИО системы зависит от наработки, т. е. распределение наработки до отказа системы не подчиняется экспоненциальному распределению.

На рис. 1 приведены зависимости изменения Pс( t) и с / ( t) из которых следует, что:

· увеличение кратности резервирования k повышает надежность (Pс возрастает, с / 0);

· резервирование наиболее эффективно на начальном участке работы системы (при t T0), т. е.

 

Рис. 1

 

Из графика с / ( t) видно, что при t = (3 4)T0 = (34) 1/ , с приближается к .

Поскольку средняя наработка до отказа системы при идентичных элементах ( = const):

 

 

то выигрыш в средней наработке T снижается по мере увеличения кратности резервирования.

Например,

при k = 1

 

T = T0 ·(1 + 1/2) = 3/2T0

(увеличение Tна 50%);

 

при k = 2

 

T= T0 ·(1 + 1/2 + 1/3) = 11/6T0

(увеличение Tна 83%);

 

при k = 3

T= 25/12T0

(увеличение Tна 108%).

 

Таким образом, динамика роста T составляет: 50, 33 и 25%, т. е. уменьшается.

 



<== предыдущая лекция | следующая лекция ==>
Распределение норм надежности основной системы по элементам. | НАДЕЖНОСТЬ СИСТЕМЫ С НЕНАГРУЖЕННЫМ РЕЗЕРВИРОВАНИЕМ


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.185 сек.