русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Напряжения в поперечном сечении


Дата добавления: 2014-04-18; просмотров: 1094; Нарушение авторских прав


Опыты показывают, что если на поверхности бруса круглого сечения нанести прямоугольную сетку, а на торцевой поверхности нанести радиальные линии (рис. 5.4), то после деформации кручения окажется, что:

B
B1
B
B1
j
g
Рис. 5.4
r
dA
t
 
T
x
dx

а)все образующие поворачиваются на один и тот же угол g, а прямоугольники, нанесенные на поверхности, превращаются в параллелограммы;

б) торцевые сечения остаются круглыми, плоскими, расстояния между ними не меняются;

в) каждое сечение поворачивается относительно другого на некоторыйугол j, называемый углом закручивания;

г) радиальные линии на торцевой поверхности остаются прямыми.

На основании этих наблюдений можно заключить, что может быть принята гипотеза Бернулли (гипотеза плоских сечений), а в вале возникают условия чистого сдвига, в поперечных сечениях действуют только касательные напряжения, а нормальные напряжения равны нулю.

Рассмотрим поперечное сечение вала, расположенное на некотором расстоянии х от торцевого сечения, где Мк = T (рис. 5.4). На элементарной площадке будет действовать элементарная сила t×, момент относительно оси вала, создаваемый этой силой равен (t×r. Крутящий момент Мк, в сечении равен

. (5.1)

Для того чтобы проинтегрировать это выражение, необходимо знать закон распределения напряжений в сечении. Выделим из вала элементарное кольцо длиной и толщиной dr (рис. 5.5).

Правый торец элемента повернется относительно левого на угол dj, образующая СВ повернется на угол g и займет положение СВ1. Угол g – относительный сдвиг. С одной стороны, из треугольника ОВВ1 найдем:

.

C
r
dr
B
B1
O
dj
g
dx
Рис. 5.5
tmax
 



 

 


С другой стороны, из треугольника СВВ1 получим: .

Приравнивая правые части полученных выражений, имеем: .

На основании закона Гука при сдвиге:

. (5.2)

Подставив выражение (5.2) в (5.1), получим:

.

Откуда

. (5.3)

Подставим значение в выражение (5.2) и получим:

. (5.4)

Таким образом, касательные напряжения при кручении прямо пропорциональны расстоянию от центра тяжести сечения до рассматриваемой точки и одинаковы в точках, одинаково удаленных от центра тяжести сечения (рис. 5.5). При r = 0 получим t = 0.

Наибольшие напряжения возникают в точках контура сечения при r = R:

.

Величина отношения полярного момента инерции к радиусу вала называется моментом сопротивления сечения при кручении, или полярным моментом сопротивления .

Для сплошного круглого сечения .

Для кольцевого сечения , где .

Тогда максимальные касательные напряжения равны

. (5.5)

 

 



<== предыдущая лекция | следующая лекция ==>
Условия прочности и жесткости при кручении. | Условия прочности и жесткости при кручении вала


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 1.226 сек.