Из многочисленных результатов теории сигналов мы выделяем два, как существенно проясняющих природу непрерывных сигналов.
Первый состоит в том, что сигналы обнаруживают своеобразную «упругость» занимаемой ими площади на плоскости «время-частота». Это явление называется частотно-временной неопределенностью сигналов.
Второй результат заключается в том, что определенный класс непрерывных сигналов допускает взаимно однозначное соответствие между любой реализацией из этого класса и дискретным набором отсчетов данной реализации.
Установив, что случайные процессы являются адекватной моделью сигналов, мы получаем возможность воспользоваться результатами и мощным аппаратом теории случайных процессов. Это не означает, что теория вероятностей и теория случайных процессов дают готовые ответы на все вопросы о сигналах: подход с новых позиций выдвигает такие вопросы, которые просто не возникали. Так и родилась теория информации, специально рассматривающая сигнальную специфику случайных процессов. При этом были построены принципиально новые понятия и получены новые, неожиданные результаты, имеющие характер научных открытий.
Первым специфическим понятием теории информации является понятие неопределенности случайного объекта, для которого удалось ввести количественную меру, названную энтропией. Начнем с простейшего примера — со случайного события. Пусть, например, некоторое событие может произойти с вероятностью 0,99 и не произойти с вероятностью 0,01, а другое событие имеет вероятности соответственно 0,5 и 0,5. Очевидно, что в первом случае результатом опыта «почти наверняка» является наступление события, во втором же случае неопределенность исхода так велика, что от прогноза разумнее воздержаться.
Для характеристики размытости распределения широко используется второй центральный момент (дисперсия) или доверительный интервал. Однако эти величины имеют смысл лишь для случайных числовых величин и не могут применяться к случайным объектам, состояния которых различаются качественно. Следовательно, мера неопределенности, связанной с распределением, должна быть некоторой его числовой характеристикой, функционалом от распределения, никак не связанным с тем, в какой шкале измеряются реализации случайного объекта.
Примем (пока без обоснования) в качестве меры неопределенности случайного объекта А с конечным множеством возможных состояний А1,...,Аn с соответствующими вероятностями P1,P2...Pn величину
H(A) = H({pi}) = -∑ pi⋅log(pi)
которую и называют энтропией случайного объекта А (или распределения { }. Убедимся, что этот функционал обладает свойствами, которые вполне естественны для меры неопределенности.
1. Н(p1...pn)=0 в том и только в том случае, когда какое-нибудь одно из {pi } равно единице (а остальные — нули). Это соответствует случаю, когда исход опыта может быть предсказан с полной достоверностью, т.е. когда отсутствует всякая неопределенность. Во всех других случаях энтропия положительна. Это свойство проверяется непосредственно.
2. Н(p1...pn) достигает наибольшего значения при p1=...pn=1/n т.е. в случае максимальной неопределенности. Действительно, вариация Н по pi при условии ∑pi = 1 дает pi = const = 1/n.
3. Если А и В — независимые случайные объекты, то H(A∩B) = H({piqk}) = H({pi}) + H({qk}) = H(A) + H(B). Это свойство проверяется непосредственно.
4. Если А и В — зависимые случайные объекты, то H(A∩B) = H(A) + H(B/A) = H(B) + H(A/B), где условная энтропия H(А/В) определяется как математическое ожидание энтропии условного распределения. Это свойство проверяется непосредственно.
5. Имеет место неравенство Н(А) > Н(А/В), что согласуется с интуитивным предположением о том, что знание состояния объекта В может только уменьшить неопределенность объекта А, а если они независимы, то оставит ее неизменной.
Как видим, свойства функционала Н позволяют использовать его в качестве меры неопределенности.