Первые шаги, положившие начало развитию системного анализа, были сделаны античными астрономами. Не обладая средствами, с помощью которых можно было бы влиять на динамику изучаемых систем, они были вынуждены ограничить свой анализ лишь наблюдением, классификацией и возможно синтезом. Другими словами, их роль была пассивной: наблюдать. В аналогичном положении находятся современные исследователи, работающие, например, в области астрофизики. Они пока еще также вынуждены ограничиться только наблюдениями каких-то процессов, не имея возможности ими управлять.
В то же время, современный исследователь призван играть активную роль в развитии наблюдаемого процесса, поскольку именно он генерирует соответствующие внешние воздействия, гарантирующие удовлетворительное поведение системы. Разумеется, при таком подходе активного вмешательства возникает множество проблем психологического и морального характера. Подобное разделение на активную и пассивную или управляемую и неуправляемую динамику позволяет наиболее наглядно выявить отличие классического и современного взглядов на системный анализ.
«Кибернетический» или управленческий подход неизбежно приводит к изменению входов системы в зависимости от наблюдаемых ее выходов. При этом преследуется цель превратить некоторую первоначально независимую переменную в частично зависимую так, чтобы поведение системы в определенном смысле приближалось к некоторой стандартной (или желаемой) траектории. Такой процесс может оказаться более сложным, если имеется еще и обратное преобразование. Подобная ситуация типична для имитационного моделирования развивающихся систем. Обратное преобразование заключается в изменении и перестройке поведения системы по измеряемому выходу и является основой кибернетического регулирования и управления.
Начальный этап построения математической модели данной системы состоит в идентификации существенных переменных и их взаимосвязей. В зависимости от конкретного типа выбранного математического описания идентификация может включать: определение размерности пространства состояний, описание внутренней динамики системы и содержательных связей между множествами объектов, распределение вероятностей для случайных воздействий. Поскольку идентификация зависит от типа математического описания, которое в свою очередь зависит от того, насколько удачно проведена идентификация, то процесс построения модели является итерационным; сначала выбирают математическое описание, которое затем модифицируют в зависимости от результатов идентификации, что приводит к новому описанию, и процесс повторяют.
Наиболее глубоко разработанной проблемой идентификации систем является задача построения внутреннего описания линейного отображения вход-выход с постоянными коэффициентами. Для простоты изложения предположим, что данная система развивается в дискретном времени с начальным состоянием x0=0 соответствующим начальному моменту времени t0=0. Можно показать, что вход u(t) и выход y(t) системы связаны следующим соотношением
y(t) = ∑A1-τ⋅u(τ)
где все матрицы {Ai} имеют размер p×m. Тогда описание типа «вход-выход» системы определяется последовательностью матриц {A1,A2, ...}. Если внутреннее описание системы, заданное соотношениями
x(t+1) = F[x(t)] + G[u(t)], y(t) = H[x(t)],
согласуется с приведенным выше внешним описанием, то связь между матрицами F, G, H и {Aj} имеет вид:
At = H⋅Ft-1⋅G, t = 0, 1, 2, ...
{6.1}
Задача реализации для линейных динамических систем состоит в отыскании n×n, n×m, p×m матриц F, G и H соответственно, удовлетворяющих соотношению {6.1} и таких, что размерность внутреннего пространства состояний n минимальна. Иными словами, задача состоит в построении по возможности более компактной модели, согласующейся с наблюдаемыми данными.
Существуют «хорошие» алгоритмы решения задачи реализации, если справедливо следующие предложение: последовательность {Ai} обладает конечномерной реализацией. Для нелинейных отображений «вход-выход» общего вида подобных отработанных алгоритмов не существует, несмотря на попытки решения отдельных классов задач с некоторой линейной или алгебраической структурой.
В отличие от наиболее общих задач идентификации (типа от внешнего описания к внутреннему), так называемые задачи идентификации параметров исследовались более интенсивно. Эти задачи обычно возникают, когда имеется твердая уверенность в правильности определения основной внутренней структуры системы и невыясненными остаются только численные значения некоторых параметров.
Предположим, что динамика системы описывается дифференциальным (или разностным) уравнением:
dx/dt = f(x, u, a), y(t) = h(x, a),
где а — вектор неизвестных параметров, которые следует определить, основываясь на значении наблюдаемого выхода системы y(t). В некоторых случаях входная функция u(t) выбирается таким образом, чтобы усилить влияние неизвестных параметров. Подчеркнем, что в данной ситуации существенным является предположение, что функции f и h, описывающие структуру системы, известны, хотя относительно их линейности никаких предположений не делается.
В качестве иллюстрации задач этого класса рассмотрим задачу о динамике численности некоторой биологической популяции, описание которой может быть получено с помощью следующих логистических уравнений:
dx/dt = r x { 1 — (x / K) } — E x, x(0)=x0.
Здесь x(t) — численность популяции в момент времени t, r — удельная скорость ее роста в отсутствии лимитирования, К — константа, характеризующая предельные трофические возможности среды обитания (уровень насыщения численности), и Е — коэффициент интенсивности изъятия особей из популяции.
Предположим, что имеется возможность измерения численности популяции в каждый момент времени, т.е.
y(t) = x(t),
но численное значение параметра К неизвестно. В этом случае задача идентификации параметров состоит в определении К на основе измерения численности популяции:
K = (-r ⋅ x2) / (dx/dt + (E - r)⋅x)
для всех t>0. Таким образом, для определения К достаточно знать (наблюдать) y(t) на любом интервале времени. Однако в более реальных ситуациях, когда имеется лишь конечное число значений y(t), приходится использовать различные приближенные методы.
Обобщение этой задачи с учетом неопределенности в измерении x(t), наличия различных видов в биологической популяции и т.д. представляют собой достаточно сложные в математическом плане задачи.
Задачи идентификации систем, описываемых с применением более общего аппарата, например, потенциальных функций или теоретико-множественных отношений, пока еще слабо изучены. В отличие от внутреннего или внешнего описания на языке дифференциальных уравнений описания данного типа в гораздо большей степени зависят от того, как сам исследователь представляет себе существо изучаемого процесса. Поэтому в этом случае решение задачи идентификации — больше искусство, чем наука, и состоит в основном в выделении таких множеств и отношений, которые приводят к содержательным результатам.