Эта модель является расширением 2-хуровневой модели и в ней вводится дополнительный промежуточный уровень между клиентом и сервером. Этот промежуточный уровень содержит один или несколько серверов приложений.
В этой модели компоненты делятся между тремя исполнителями:
1. Клиент обеспечивает логику представления, включая графический пользовательский интерфейс; клиент может запускать локальный код приложения клиента, который может содержать обращения к локальной БД, находящейся на компьютере- клиенте. Клиент исполняет коммуникационные функции, которые обеспечивают доступ клиенту в локальную или глобальную сеть.
2. Серверы приложений представляет собой новый дополнительный уровень архитектуры. На сервере приложений реализуется несколько прикладных функций, каждая из которых оформлена как служба предоставления услуг всем требующим этого программам. Серверов приложений может быть несколько, причем каждый из них предоставляет свой вид сервиса. Любая программа, запрашивающая услугу у сервера приложений, является для него клиентом. Поступающие к серверам от клиентов запросы помещаются в очередь.
3. Серверы БД в этой модели занимаются исключительно функциями СУБД: обеспечивают создания и ведения БД, обеспечивают функции хранилищ БД, кроме того, на них возлагаются функции создания резервных копий, восстановления БД после сбоев, управления выполнением транзакций.
Эта модель обладает большей гибкостью, чем двухуровневая модель.
1. Перечислите основные функции стандартного интерактивного приложения, связанного с обработкой баз данных.
2. Перечислите основные задачи презентационной логики.
3. Что включает в себя бизнес-логика приложения?
4. Перечислите варианты распределения функций стандартного интерактивного приложения в архитектуре клиент-сервер.
5. Назовите основные двухуровневые модели архитектуры клиент-сервер.
6. В чем заключаются особенности модели удаленного доступа к данным?
7. Какими средствами реализуется бизнес-логика при использовании модели удаленной презентации?
Целью разработки любой базы данных является хранение и использование информации о какой-либо предметной области. Для реализации этой цели имеются следующие инструменты:
· Реляционная модель данных - удобный способ представления данных предметной области.
· Язык SQL - универсальный способ манипулирования такими данными.
При разработке базы данных обычно выделяется несколько уровней моделирования, при помощи которых происходит переход от предметной области к конкретной реализации базы данных средствами конкретной СУБД. Можно выделить следующие уровни:
· Сама предметная область.
· Модель предметной области.
· Инфологическая модель данных.
· Даталогическая модель данных.
· Собственно база данных и приложения.
Предметная область - это часть реального мира, данные о которой мы хотим отразить в базе данных. Например, в качестве предметной области можно выбрать бухгалтерию какого-либо предприятия, отдел кадров, банк, магазин и т.д. Предметная область бесконечна и содержит как существенно важные понятия и данные, так и малозначащие или вообще не значащие данные. Так, если в качестве предметной области выбрать учет товаров на складе, то понятия "накладная" и "счет-фактура" являются существенно важными понятиями, а то, что сотрудница, принимающая накладные, имеет двоих детей - это для учета товаров неважно. Однако с точки зрения отдела кадров данные о наличии детей являются существенно важными. Таким образом, важность данных зависит от выбора предметной области.
Модель предметной области. Модель предметной области - это наши знания о предметной области. Знания могут быть как в виде неформальных знаний в мозгу эксперта, так, и выражены формально при помощи каких-либо средств. В качестве таких средств могут выступать текстовые описания предметной области, наборы должностных инструкций, правила ведения дел в компании и т.п. Наиболее информативными и полезными при разработке баз данных являются описания предметной области, выполненные при помощи специализированных графических нотаций. Имеется большое количество методик описания предметной области. Модель предметной области описывает процессы, происходящие в предметной области и данные, используемые этими процессами. От того, насколько правильно смоделирована предметная область, зависит успех дальнейшей разработки приложений.
Инфологическая модель данных. На следующем, более низком уровне находится инфологическая модель данных предметной области. Модель описывает понятия предметной области, их взаимосвязь, а также ограничения на данные, налагаемые предметной областью. Примеры понятий - "сотрудник", "отдел", "проект", "зарплата". Примеры взаимосвязей между понятиями - "сотрудник числится ровно в одном отделе", "сотрудник может выполнять несколько проектов", "над одним проектом может работать несколько сотрудников". Примеры ограничений - "возраст сотрудника не менее 16 и не более 60 лет".
Инфологическая модель данных является начальным прототипом будущей базы данных. Эта модель строится в терминах информационных единиц, но без привязки к конкретной СУБД. Более того, логическая модель данных необязательно должна быть выражена средствами именно реляционной модели данных. Основным средством разработки логической модели данных в настоящий момент являются различные варианты ER-диаграмм (Entity-Relationship, диаграммы сущность-связь). Одну и ту же ER-модель можно преобразовать как в реляционную модель данных, так и в модель данных для иерархических и сетевых СУБД, или в постреляционную модель данных. Однако, т.к. мы рассматриваем именно реляционные СУБД, то можно считать, что инфологическая модель данных для нас формулируется в терминах реляционной модели данных.
Решения, принятые на предыдущем уровне, при разработке модели предметной области, определяют некоторые границы, в пределах которых можно развивать логическую модель данных, в пределах же этих границ можно принимать различные решения. Например, модель предметной области складского учета содержит понятия "склад", "накладная", "товар". При разработке соответствующей реляционной модели эти термины обязательно должны быть использованы, но различных способов реализации может быть много - можно создать одно отношение, в котором будут присутствовать в качестве атрибутов "склад", "накладная", "товар", а можно создать три отдельных отношения, по одному на каждое понятие.
Даталогическая модель данных. На еще более низком уровне находится даталогическая модель данных. Даталогическая модель данных описывает данные средствами конкретной СУБД. Мы будем считать, что даталогическая модель данных реализована средствами именно реляционной СУБД, хотя это необязательно. Отношения, разработанные на стадии формирования логической модели данных, преобразуются в таблицы, атрибуты становятся столбцами таблиц, для ключевых атрибутов создаются уникальные индексы, домены преображаются в типы данных, принятые в конкретной СУБД.
Ограничения, имеющиеся в логической модели данных, реализуются различными средствами СУБД, например, при помощи индексов, декларативных ограничений целостности, триггеров, хранимых процедур. При этом решения, принятые на уровне логического моделирования определяют некоторые границы, в пределах которых можно развивать даталогическая модель данных. Точно также, в пределах этих границ можно принимать различные решения. Например, отношения, содержащиеся в логической модели данных, должны быть преобразованы в таблицы, но для каждой таблицы можно дополнительно объявить различные индексы, повышающие скорость обращения к данным. Многое тут зависит от конкретной СУБД.
Собственно база данных и приложения. И, наконец, как результат предыдущих этапов появляется собственно сама база данных. База данных реализована на конкретной программно-аппаратной основе, и выбор этой основы позволяет существенно повысить скорость работы с базой данных. Например, можно выбирать различные типы компьютеров, менять количество процессоров, объем оперативной памяти, дисковые подсистемы и т.п. Очень большое значение имеет также настройка СУБД в пределах выбранной программно-аппаратной платформы.
Таким образом, ясно, что решения, принятые на каждом этапе моделирования и разработки базы данных, будут сказываться на дальнейших этапах. Поэтому особую роль играет принятие правильных решений на ранних этапах моделирования.