русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Линейные функции.


Дата добавления: 2013-12-24; просмотров: 816; Нарушение авторских прав


Рассмотрим класс функций, порождённый множеством
F={xx×yy, xxÅyy, 1}.

Из того, что xxÅ1=`х, следует, что в данном базисе реализуется инверсия, которая вместе с конъюнкцией даёт возможность построить любую функцию. Значит, данный базис порождает класс всех функций – класс С.

Сравним таблицы функции сложения по модулю два и дизъюнкции (табл.5.12).


 

Таблица. 5.12

a b aÚb aÅb

Из таблицы видно, что аÚbb=(а Å bb) Úа×bb.

Если а и b такие, что имеет место равенство a×b=0, то такие переменные называются ортогональными. Для ортогональных переменных aÚb=(aÅb).

Если рассматривать СДНФ любой функции, то можно показать, что в ней любая пара конъюнкций ортогональна. Это приводит к следующему алгоритму построения записи функции в рассматриваемом базисе.

· записать функцию в СДНФ;

· заменить в СДНФ символы дизъюнкции на символы сложения по модулю два;

· заменить все инверсии по формуле `х =(хÅ1);

· раскрыть скобки, пользуясь свойством дистрибуции х×(yyÅz)=xx×yyÅxx×z;

· сделать сокращения, используя свойство хÅх=0, хÅ0=x.

В результате получается запись функции в форме, которую представим в общем виде

f=CC0 ÅCC1×xx1Å CC2×xx2 Å… ÅCCn×xxnÅ CC(n+1)×xx1×xx2Å…ÅCCm×xx1×xx2×…×xxn , где С012,…, принимают значения 0 или 1.

Это представление называется полиномом Жегалкина, а алгебра с сигнатурой {F={xx×yy, xxÅyy, 1}} – алгеброй Жегалкина.

ПримерПример. Построим полином Жегалкина для функции импликации. По её таблице истинности запишем СДНФ этой функции



a®b =`a`b Ú`abÚ ab,

после замены дизъюнкций на сложение по модулю два имеем a®b =
=`a`b Å`abÅ ab = (aÅ1)(bÅ1)Å(aÅ1)×bÅa×b = a×bÅaÅbÅ1Åa×bÅbÅa×b =
= a×bÅaÅ1.

Определение. Функция называется линейной, если её полином Жегалкина не содержит конъюнкций. Общий вид линейной функции
f = CC0 ÅCC1×xx1Å CC2×xx2 Å… ÅCCn×xxn.

Число различных линейных функций от не более чем n переменных определяется формулой N = 2n+1.

Суперпозиция линейных функций есть функция линейная, следовательно, множество линейных функций образуют класс линейных функций, обозначаемый как L. Базисом класса L служит множество {xxÅyy, 1}.



<== предыдущая лекция | следующая лекция ==>
Монотонные функции | Функциональная полнота.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.005 сек.