русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Модели теории игр


Дата добавления: 2013-12-24; просмотров: 4109; Нарушение авторских прав


Имитационные модели

Имитационными называются модели, воспроизводящие реальные соотношения между экономическими показателями, описывающими прогнозируемый объект.

В настоящее время имитационные модели разрабатываются как программы для ЭВМ, позволяющие с помощь средств вычислительной техники «проигрывать» (проводить много вариантные расчёты) развития сложных систем. Имитационная модель учитывает временной фактор и наряду с математическими моделями, имитирующими прогнозируемый процесс, содержит блоки, в которых решения принимаются человеком (прогнозистом). Имитация процессов организуется в форме диалога и у прогнозиста имеется возможность на каждом этапе принятия решения, анализируя и оценивая последствия принятия того или иного решения выбрать самое рациональное, по его мнению, решение.

В последние годы имитационные модели находят все более широкое применение для имитации экономических процессов, в которых сталкиваются различные интересы, типа конкуренции на рынке.

Имитационные модели, как и структурные модели, требуют больших трудозатрат на их разработку и высокой квалификации специалистов.

 

Модели теории игр направлены на математическое описание и выбор решений в конфликтных ситуациях, при которых интересы участников либо противоположны (антагонистические игры), либо не совпадают, хота и не противоположны (игры с противоположными интересами). Для конфликтных ситуаций характерно то, что ни одна из сторон не может полностью контролировать ситуацию и эффективность решений, принимаемых в ходе конфликта каждой из сторон, зависит от действий другой стороны.

Теория игр впервые была систематически изложена О.Моргенштерном и Дж. фон Нейманом в 1944 году и содержала в основном экономические примеры, поскольку экономическому конфликту легче всего придать численную форму. Во время второй мировой войны и сразу после неё теорией игр серьёзно заинтересовались военные, которые увидели в ней аппарат для исследования стратегических решений. В СССР аппарат теории игр для разрешения экономических конфликтов практически не использовался, так как, директивная система планирования исключала наличие конфликтных ситуаций в экономике. С переходом к рыночным отношениям применение моделей теории игр для оценки конфликтных ситуаций и принятия решений в условиях неопределённости стало актуальным.



Содержание игры заключается в том, что каждый из её участников выбирает такую стратегию действий, которая, как он полагает, обеспечивает ему максимальный выигрыш (минимальный проигрыш). Стратегию игрока называют оптимальной, если при её применении выигрыш данного игрока не уменьшается, какими бы стратегиями не пользовался его противник. Результаты принимаемых решений заносятся в специальную таблицу, которая называется матрицей игры или платёжной матрицей. При поиске оптимальных стратегий в теории игр игроки опираются на принцип максимальной осторожности. Данный принцип гласит, что каждый игрок, считая партнёра по игре высоко интеллектуальным соперником, выбирает свою стратегию в предположении о том, что соперник не упустит ни единой возможности использовать его ошибку в своих интересах.

В экономической практике часто приходится придавать игровую форму таким ситуациям, в которых один из участников безразличен к результату игры. Такие игры называют статистическими или играми с «природой», понимая под «природой» всю совокупность внешних обстоятельств. В играх с «природой» степень неопределённости для сознательного игрока возрастает, так как «природа», будучи индеферентной в отношении выигрыша, может предпринимать и такие ответные действия, которые ей совершенно не выгодны.

Рассмотрим игровую ситуацию, в которой игроки и должны принять с каждой стороны по одному решению из трёх возможных. Результаты принимаемых решений (выигрыши игрока ) занесены в платёжную матрицу (табл.14)

Действия игрока :

1. Определяется для каждого решения минимальное значение , ожидаемого выигрыша . Для нашего случая .

2. Из всех возможных выигрышей игрок выбирает максимальное значение , т.е. . Это .

Число называется нижней чистой ценой игры.

Действия игрока :

1. Определяется для каждого решения максимально возможный проигрыш . Для нашего случая .

2. Из всех проигрышей игрок выбирает минимальное значение , т.е. . Это .

Число называется верхней чистой ценой игры.

Таблица 14

Платёжная матрица

7
 

Таким образом, в нашей игровой ситуации имеется «седловая» точка - наименьшая в строке и наибольшая в столбце, и соответственно, игроку следует принять 1 решение, а игроку - 2.

Однако на практике достаточно часто возникают игровые ситуации, не имеющие чётко выраженных «седловых» точек. Платёжная матрица такой ситуации представлена в таблице 15.

Таблица 15

Платёжная матрица

 

В этом случае игрокам необходимо использовать смешанные стратегии. Обозначим через вероятности, с которыми игрок принимает свои решения (). Обозначим через вероятности, с которыми игрок принимает свои решения (). Тогда величина выигрыша будет являться функцией от вероятностей принимаемых решений:

.

Для нашего случая:

Обозначим оптимальные смешанные стратегии:

По аналогии с предыдущей ситуацией для «седловой» точки (наименьшая в строке и наибольшая в столбце) должно выполняться неравенство:

«Седловую» точку при оптимальных смешанных стратегиях называют ценой игры: , т.е.:

.

Проведём преобразования:

;

;

.

Разделим обе части неравенства на цену игры :

.

Введём обозначения: , .

Тогда неравенство будет иметь следующий вид:

.

Таким образом, наша игровая ситуация сводится к решению оптимизационной задачи. Игрок , стремясь увеличить свой выигрыш, должен минимизировать величину обратную своему выигрышу:

.

При выполнении ограничений:

.

Игрок , наоборот, стремится сделать свой проигрыш меньше, а значит величину больше. Для игрока задача запишется в следующем виде:

,

.

Для игрока в рассматриваемой игровой ситуации:

Решая данную задачу, получаем , .

. .

Оптимальная смешанная стратегия:

.

Пример Фермерское хозяйство выращивает картофель и пшеницу на площади 100 Га. Прибыль, получаемая от реализации 1 тонны картофеля –500 руб., от 1 т. пшеницы – 3000 руб. Урожайность культур зависит от погодных условий. В засушливое лето урожайность картофеля – 15 т/га, пшеницы – 3 т/га. В дождливое лето урожайность картофеля – 24 т/га, пшеницы – 2 т/га. Определить какую площадь фермерскому хозяйству необходимо отвести под картофель и пшеницу.

Решение:

1. Если на площади 100 Га посадить только картофель, то ожидаемая прибыль составляет:

- в засушливое лето руб.,

- в дождливое лето руб.

2. Если на площади 100 Га посадить только пшеницу, то ожидаемая прибыль составляет:

- в засушливое лето руб.,

- в дождливое лето руб.

Заполним платёжную матрицу (табл.16).

Если был посажен картофель, и сложилось дождливое лето, наш проигрыш будет равен 0 (мы приняли наилучший вариант решения для сложившихся погодных условий).

Если был посажен картофель, и сложилось засушливое лето, наш проигрыш составит руб. (был принят не лучший вариант решения, при посадке пшеницы в засушливое лето мы получили бы 900000руб. прибыли, а так только – 750000руб.).

Если была посажена пшеница, и сложилось дождливое лето, наш проигрыш составит руб. (при посадке картофеля мы получили бы 1200000 руб.).

Если была посажена пшеница, и сложилось дождливое лето, наш проигрыш будет равен 0.

Таблица 16

Платёжная матрица

 

Вариант решения Погодные условия
Дождливое лето Засушливое лето
Картофель -150000
Пшеница -600000

 

Произведём преобразование матрицы - для того чтобы избавиться от отрицательных чисел прибавим к каждому её элементу 600000:

 

, и разделим на 150000.

 

Целевая функция: ,

Ограничения: 1) ,

2) .

Из первого ограничения имеем: , подставим значение во второе ограничение:

.

, .

Таким образом, картофелем следует засадить Га, а пшеницей Га.

Теория игр нашла широкое применение для теоретического описания таких процессов как конкуренция на рынке. Однако, практика показывает, что основной принцип, которым оперирует теория игр (принцип максимальной осторожности, т.е. мы при выборе или поиске своего решения исходим из того, что наш конкурент является высокоинтеллектуальным человеком, принимающим лучшие решения) реализуется, по оценкам экспертов, на 20%. В основном, наши конкуренты принимают далеко не самые эффективные решения.

 



<== предыдущая лекция | следующая лекция ==>
Оптимизационные модели | Оценка качества прогнозов


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.006 сек.