русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Определение. Частные производные вида и т.д. называются смешанными производными.


Дата добавления: 2013-12-24; просмотров: 1539; Нарушение авторских прав


Определение. Пусть в некоторой области задана функция z = f(x, y). Возьмем произвольную точку М(х, у) и зададим приращение Dх к переменной х. Тогда величина Dxz = f( x + Dx, y) – f(x, y) называется частным приращением функции по х.

Определение: Если каждой паре независимых друг от друга чисел (х, у) из некоторого множества по какому - либо правилу ставится в соответствие одно или несколько значений переменной z, то переменная z называется функцией двух переменных.

z = f(x, y)

 

Определение: Если паре чисел (х, у) соответствует одно значение z, то функция называется однозначной, а если более одного, то – многозначной.

 

Определение: Областью определения функции z называется совокупность пар (х, у), при которых функция z существует.

 

Определение: Окрестностью точкиМ00, у0) радиуса r называется совокупность всех точек (х, у), которые удовлетворяют условию .

 

Определение: Число А называется пределом функции f(x, y) при стремлении точки М(х, у) к точке М00, у0), если для каждого числа e > 0 найдется такое число r >0, что для любой точки М(х, у), для которых верно условие

также верно и условие .

Записывают:

 

Определение: Пусть точка М00, у0) принадлежит области определения функции f(x, y). Тогда функция z = f(x, y) называется непрерывной в точке М00, у0), если

(1)

причем точка М(х, у) стремится к точке М00, у0) произвольным образом.

 

Если в какой – либо точке условие (1) не выполняется, то эта точка называется точкой разрывафункции f(x, y). Это может быть в следующих случаях:

1) Функция z = f(x, y) не определена в точке М00, у0).

2) Не существует предел .

3) Этот предел существует, но он не равен f( x0, y0).

 

 

Производные и дифференциалы функций



нескольких переменных.

 

 

Можно записать

.

 

 

Тогда называется частной производнойфункции z = f(x, y) по х.

Обозначение:

 

Аналогично определяется частная производная функции по у.

 

Геометрическим смысломчастной производной (допустим ) является тангенс угла наклона касательной, проведенной в точке N0(x0, y0, z0) к сечению поверхности плоскостью у = у0.

 

 

Полное приращение и полный дифференциал.

Определение. Для функции f(x, y) выражение Dz = f( x + Dx, y + Dy) – f(x, y) называется полным приращением.

 

Определение. Выражение называется полным приращениемфункции f(x, y) в некоторой точке (х, у), где a1 и a2 – бесконечно малые функции при Dх ® 0 и Dу ® 0 соответственно.

Определение: Полным дифференциаломфункции z = f(x, y) называется главная линейная относительно Dх и Dу приращения функции Dz в точке (х, у).

 

Для функции произвольного числа переменных:

 

Пример. Найти полный дифференциал функции .

 

 

 

 

Пример. Найти полный дифференциал функции

 

 

Геометрический смысл полного дифференциала.

Касательная плоскость и нормаль к поверхности.

 

 

нормаль

 

N

j N0

 

касательная плоскость

 

 

Пусть N и N0 – точки данной поверхности. Проведем прямую NN0. Плоскость, которая проходит через точку N0, называется касательной плоскостью к поверхности, если угол между секущей NN0 и этой плоскостью стремится к нулю, когда стремится к нулю расстояние NN0.

 

Определение. Нормальюк поверхности в точке N0 называется прямая, проходящая через точку N0 перпендикулярно касательной плоскости к этой поверхности.

 

В какой – либо точке поверхность имеет, либо только одну касательную плоскость, либо не имеет ее вовсе.

 

Если поверхность задана уравнением z = f(x, y), где f(x, y) – функция, дифференцируемая в точке М00, у0), касательная плоскость в точке N0(x0,y0,(x0,y0)) существует и имеет уравнение:

.

 

Уравнение нормали к поверхности в этой точке:

Геометрическим смыслом полного дифференциала функции двух переменных f(x, y) в точке (х0, у0) является приращение аппликаты (координаты z) касательной плоскости к поверхности при переходе от точки (х0, у0) к точке (х0+Dх, у0+Dу).

Как видно, геометрический смысл полного дифференциала функции двух переменных является пространственным аналогом геометрического смысла дифференциала функции одной переменной.

 

Пример. Найти уравнения касательной плоскости и нормали к поверхности

в точке М(1, 1, 1).

 

 

Уравнение касательной плоскости:

 

Уравнение нормали:

 

 

Частные производные высших порядков.

 

Если функция f(x, y) определена в некоторой области D, то ее частные производные и тоже будут определены в той же области или ее части.

Будем называть эти производные частными производными первого порядка.

Производные этих функций будут частными производными второго порядка.

 

Продолжая дифференцировать полученные равенства, получим частные производные более высоких порядков.

 

 

Теорема. Если функция f(x, y) и ее частные производные определены и непрерывны в точке М(х, у) и ее окрестности, то верно соотношение:

.

Т.е. частные производные высших порядков не зависят от порядка дифференцирования.

 

Аналогично определяются дифференциалы высших порядков.

 

…………………

Здесь n – символическая степень производной, на которую заменяется реальная степень после возведения в нее стоящего с скобках выражения.

 

 

Экстремум функции нескольких переменных.

 

Определение. Если для функции z = f(x, y), определенной в некоторой области, в некоторой окрестности точки М00, у0) верно неравенство

то точка М0 называется точкой максимума.

Определение. Если для функции z = f(x, y), определенной в некоторой области, в некоторой окрестности точки М00, у0) верно неравенство

то точка М0 называется точкой минимума.

Теорема. (Необходимые условия экстремума).

Если функция f(x,y) в точке (х0, у0) имеет экстремум, то в этой точке либо обе ее частные производные первого порядка равны нулю , либо хотя бы одна из них не существует.

Эту точку (х0, у0) будем называть критической точкой.

 

Теорема. (Достаточные условия экстремума).

Пусть в окрестности критической точки (х0, у0) функция f(x, y) имеет непрерывные частные производные до второго порядка включительно. Рассмотрим выражение:

1) Если D(x0, y0) > 0, то в точке (х0, у0) функция f(x, y) имеет экстремум, если

- максимум, если - минимум.

2) Если D(x0, y0) < 0, то в точке (х0, у0) функция f(x, y) не имеет экстремума

В случае, если D = 0, вывод о наличии экстремума сделать нельзя.

 

Условный экстремум.

 

Условный экстремум находится, когда переменные х и у, входящие в функцию u = f( x, y), не являются независимыми, т.е. существует некоторое соотношение

j(х, у) = 0, которое называется уравнением связи.

Тогда из переменных х и у только одна будет независимой, т.к. другая может быть выражена через нее из уравнения связи.

Тогда u = f(x, y(x)).

В точках экстремума:

=0 (1)

Кроме того:

(2)

Умножим равенство (2) на число l и сложим с равенством (1).

 

 

 

Для выполнения этого условия во всех точках найдем неопределенный коэффициент l так, чтобы выполнялась система трех уравнений:

Полученная система уравнений является необходимыми условиями условного экстремума. Однако это условие не является достаточным. Поэтому при нахождении критических точек требуется их дополнительное исследование на экстремум.

Выражение u = f(x, y) + lj(x, y) называется функцией Лагранжа.

Пример. Найти экстремум функции f(x, y) = xy, если уравнение связи:

2x + 3y – 5 = 0

 

Таким образом, функция имеет экстремум в точке .

Использование функции Лагранжа для нахождения точек экстремума функции называется также методом множителей Лагранжа.

Выше мы рассмотрели функцию двух переменных, однако, все рассуждения относительно условного экстремума могут быть распространены на функции большего числа переменных.

 

 



<== предыдущая лекция | следующая лекция ==>
Определение. Точки максимума и минимума функции называются точками экстремума. | Марковские цепи с конечным числом состояний и непрерывным временем.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.012 сек.