русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Аппроксимация функций с помощью нейронных сетей


Дата добавления: 2013-12-24; просмотров: 1312; Нарушение авторских прав


Лекция 17

Пример 2.5 (Супервизорное управление).Симуляция модели (рис. 8) системы супервизорного управления при kp5=32; kp4=8; kp3=3,55; kp2=2; kp1=0,5; y1 =0,5; y2=1; y3=1,5; y4=2; y5=4и системы с пропорциональным законом управления с фиксированным коэффициентом kp4=8 для v(t)=2*1(t) и v(t) = 1(t) показывают (рис. 9, 10), что использование нелинейного закона управления

 

 

позволяет обеспечить стабилизацию системы в широком диапазоне изменения управляемой величины (модель supervisor.mdl в MATLABR2006a).

Рис. 8

 

Рис. 9

Рис. 10


 

Рассмотрим задачу реализации нелинейных алгебраических зависимостей нейронными сетями. Приведенный выше персептрон может аппроксимировать

произвольную гладкую функцию. В качестве примера запишем выходной сигнал сети с одним выходом y и одним входом u, состоящей из одного скрытого слоя с двумя нелинейными нейронами и выходного слоя из одного линейного нейрона:

. (28)

Внутренние входы v1 и v2 скрытых нейронов определяются выражениями

. (29)

Пусть функция активации f (v) скрытых нейронов является функцией tangh(v)(гиперболический тангенс). При этом график зависимости y=g(u)принайденных в результатеобучения значениях весовых коэффициентов w0 , wh и смещений bhможно построить, как показано на рис. 8. Здесь =, = - ,==1.

Рис. 8

Изменяя веса и смещения в соответствии с обучающей выборкой, получаем гладкую кривую, аппроксимирующую вход нейронной сети.

Эффективность использования нейронных сетей устанавливается теоремой

о полноте. Смысл этой теоремы в том (Cybenko, 1989), что персептрон, по

меньшей мере с одним скрытым слоем, способен аппроксимировать любую

непрерывную функцию с произвольной степенью точности при условии

выбора достаточного числа нейронов скрытого слоя.



 



<== предыдущая лекция | следующая лекция ==>
Табличное изменение коэффициента усиления (супервизорное управление) | Синтез нечетких нейронных сетей


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.01 сек.