Пример 2.5 (Супервизорное управление).Симуляция модели (рис. 8) системы супервизорного управления при kp5=32; kp4=8; kp3=3,55; kp2=2; kp1=0,5; y1 =0,5; y2=1; y3=1,5; y4=2; y5=4и системы с пропорциональным законом управления с фиксированным коэффициентом kp4=8 для v(t)=2*1(t) и v(t) = 1(t) показывают (рис. 9, 10), что использование нелинейного закона управления
позволяет обеспечить стабилизацию системы в широком диапазоне изменения управляемой величины (модель supervisor.mdl в MATLABR2006a).
Рис. 8
Рис. 9
Рис. 10
Рассмотрим задачу реализации нелинейных алгебраических зависимостей нейронными сетями. Приведенный выше персептрон может аппроксимировать
произвольную гладкую функцию. В качестве примера запишем выходной сигнал сети с одним выходом y и одним входом u, состоящей из одного скрытого слоя с двумя нелинейными нейронами и выходного слоя из одного линейного нейрона:
. (28)
Внутренние входы v1 и v2 скрытых нейронов определяются выражениями
. (29)
Пусть функция активации f (v) скрытых нейронов является функцией tangh(v)(гиперболический тангенс). При этом график зависимости y=g(u)принайденных в результатеобучения значениях весовых коэффициентов w0, whи смещений bhможно построить, как показано на рис. 8. Здесь =, = - ,==1.
Рис. 8
Изменяя веса и смещения в соответствии с обучающей выборкой, получаем гладкую кривую, аппроксимирующую вход нейронной сети.
Эффективность использования нейронных сетей устанавливается теоремой
о полноте. Смысл этой теоремы в том (Cybenko, 1989), что персептрон, по
меньшей мере с одним скрытым слоем, способен аппроксимировать любую
непрерывную функцию с произвольной степенью точности при условии