русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Табличное изменение коэффициента усиления (супервизорное управление)


Дата добавления: 2013-12-24; просмотров: 883; Нарушение авторских прав


Рассмотрим использование контроллера Такаги-Сугено для супервизорного управления, понятие о котором было дано в параграфе 2.1. Пусть объект управления с существенно нелинейными свойствами (коэффициент усиления объекта y2(t) зависит от управляемой величины y(t)) описывается уравнением

 

.

Структуру данного объекта можно представить как линейная часть с передаточной функцией

 

,

охваченная квадратичной обратной связью (рис.6).

 

Рис. 6

 

Цель управления заключается в том, чтобы обеспечить стабилизацию системы при изменении рабочей точки (состояния равновесия), т.е. значения y=const, в широких пределах при условии, что y0. Проблемы, возникающие при использовании для этой цели четкого пропорционального регулятора с фиксированным коэффициентом усиления kp, сводятся к следующему:

1) устойчивость и качество системы в сильной степени зависят от значения управляемой величины в состоянии равновесия;

2) настройка (подбор) коэффициента усиления kp не позволяет добиться желаемой цели.

Отсюда приходим к выводу, что единственный путь решения поставленной задачи применить нелинейный закон управления, а именно, супервизорное управление, которое бы изменяло коэффициент усиления по нелинейному закону в зависимости от управляемой величины у. Предположим, что мы нашли желаемый закон изменения коэффициента усиления регулятора, обеспечивающий требуемое качество управления (рис.7).

 

Рис. 7

 

Для реализации желаемого закона управления можно использовать различные способы аппроксимации, в частности, кусочно-линейную аппроксимацию или метод задания таблиц (look-up table) . Однако более удобно с точки зрения точности и быстроты вычислений применить нечеткий контроллер типа Такаги-Сугено. Заметим, что с помощью нечеткой логики можно, используя правила и функции принадлежности обеспечить аппроксимацию любой непрерывной функции с любой требуемой точностью, т.е. нечеткая модель Такаги-Сугено (ТСМ) при соответствующем выборе параметров является универсальным аппроксиматором непрерывной вещественной функции, которая определена в замкнутом и ограниченном множестве Rn . Это означает, что для любого >0 и для любой непрерывной функции g(x) существует ТСМ такая, что g(x) - y(x) < , где y(x) является выходом ТСМ.



Рис. 7 иллюстрирует, каким образом можно аппроксимировать желаемую кривую изменения коэффициента усиления регулятора, используя три точки (другими словами, три правила) и тем самым осуществить супервизорное управление. Разумеется, чтобы повысить точность аппроксимации (подобно тому, как это делается в ряде Фурье), нужно еще добавить точки, и следовательно, правила, которые очевидно улучшат качество управления. Нечеткий контроллер, используемый для аппроксимации, значительно проще реализовать и настроить с помощью средств вычислительной техники, чем таблицы задания и кусочно-линейный аппроксиматор.

В данном случае базовые правила выглядят так:

 

Если управляемая величина y большая, То коэффициент kp1,

Если управляемая величина y средняя, То коэффициент kp2,

Если управляемая величина y малая, То коэффициент kp3.

Рис. 7

При этом

 

Правила не аналогичны методу заданию таблиц, т.к. нечеткая арифметика интерполирует форму нелинейной функции. Показано, что объем памяти, требуемый для сохранения информации о функциях принадлежности и правил, значительно меньше, чем для таблиц задания, в особенности для систем с несколькими входами. В результате скорость вычислений может быть также повышена.



<== предыдущая лекция | следующая лекция ==>
Модель Такаги-Сугено как квазилинейное устройство | Аппроксимация функций с помощью нейронных сетей


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.003 сек.