русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Адресация информации и обработка адресов


Дата добавления: 2013-12-24; просмотров: 1418; Нарушение авторских прав


Рис. 6.1.

Типы и классификация ОП

Организация оперативной памяти (RAM)

Оперативная память (ОП) — совокупность ОЗУ, объединенных в одну систему, управляемую процессором. Для обеспечения приспосабливаемости ЭВМ к конкретным потребностям пользователей применяют принцип блочного построения 0П. Так, например, на основе блоков 03У емкостью 128 и 256 Кслов можно построить ОП любой емкости. ОП заданной емкости, составленная из нескольких блоков ОЗУ, называется многоблочной 0П.

Функциональном отношении многоблочная ОП рассматривается как одно ОЗУ с емкостью, равной сумме емкостей блоков, и быстродействием, примерно равным быстродействию отдельного блока. Адрес ячеек такой 0П содержит адрес блока и адрес ячейки памяти в заданном блоке ОЗУ.

Устройства, подключенные к 0П, обращаются к ней независимо друг от друга. Принцип обслуживания запросов к ОП - приоритетный. Устройствам присваиваются приоритеты: низший — центральному процессору, более высший — ВЗУ. ОП обслуживает очередной запрос с наивысшим приоритетом, а все остальные запросы от других устройств ожидают момента окончания обслуживания. Такой принцип обслуживания объясняется тем, что ВЗУ не могут долго ждать, так как большое время ожидания приводит к потере информации, записываемой или считываемой с непрерывно движущегося носителя. ОП, ресурсы которой распределяются между несколькими потребителями, называют 0П с многоканальным доступом.

Многоблочная ОП, в которой допускается совместное выполнение нескольких обращений к разным блокам ОЗУ называется ОП с расслоением обращений. В такой ОП блоки ОЗУ функционируют параллельно во времени, что возможно, если последующие обращения к ОП адресованы к блокам, не запятым обслуживанием предшествующих запросов. Степень расслоения обращений характеризуется коэффициентом расслоения, равным среднему числу обращений к ОП, которые могут быть приняты на обслуживание одновременно. Чем выше коэффициент расслоения, тем выше производительность.



Из микросхем, памяти (RAM - Random Access Memory, память с произвольным доступом) используется два основных типа: статическая (SRAM - Static RAM) и динамическая (DRAM - Dynamic RAM).

Рассмотрим понятия статическая и динамическая. Назовем, упорядоченную последовательность информационных и управляющих слов образует массив. Количество ячеек памяти, используемое для представления массива в ЭВМ, называется длиной массива.

Группа ячеек памяти с последовательными номерами Аб, Аб+1, Аб+2, ... , Аб+n, представляющая массив длиной (n+1), рассматривается как массив ячеек памяти с базовым адресом Аб (рис. 6.1).

Статическое распределение памяти основано на выделении ячеек ОП для массивов в процессе анализа и составления программы, т. е. до начала решения задачи и при выполнении программы базисные адреса сохраняют постоянные значения.

При статическом распределении ячеек памяти в массивах память используется неэффективно, так как в процессе решения задачи количество слов в массиве в большинстве случаев меньше длины массива ячеек с базовым адресом Аб. Поэтому этот способ применяют лишь в простейших системах программирования на небольших ЭВМ.

 

Выделение в памяти массива ячеек длиной (n+1) и базовым адресом Аб

 
 

 


 

 

Динамическое распределение памяти основано на выделении ячеек памяти для массивов с учетом их длин в порядке их появления в процессе решения задачи. Оно используется для экономии ячеек памяти в пределах одной программы и при мультипрограммной работе ЭВМ для распределения памяти между программами.

В статической памяти элементы (ячейки) построены на различных (вариантах триггеров - схем с двумя устойчивыми состояниями. После записи бита в такую ячейку она может пребывать в этом состоянии столь угодно долго - необходимо только наличие питания. При обращении к микросхеме статической памяти на нее подается полный адрес, который при помощи внутреннего дешифратора преобразуется в сигналы выборки конкретных ячеек. Ячейки статической памяти имеют малое время, срабатывания (единицы-десятки наносекунд), однако микросхемы на их основе имеют низкую удельную плотность данных (порядка единиц Мбит на корпус) и высокое энергопотребление. Поэтому статическая память используется в основном в качестве буферной (кэш-память).

В динамической памяти ячейки построены на основе областей с накоплением зарядов, занимающих гораздо меньшую площадь, нежели Tриггеры, ч практически не потребляющих энергии при хранении. При записи бита в такую ячейку в ней (формируется электрический заряд, который сохраняется в течение нескольких миллисекунд; для постоянного сохранения заряда ячейки необходимо регенерировать - перезаписывать содержимое для восстановления 'зарядов. Ячейки микросхем динамической памяти организованы в виде прямоугольной (обычно - квадратной) матрицы; при обращении к микросхеме на ее входы вначале подается адрес строки матрицы, сопровождаемый сигналом RAS (Row Address Strobe - строб адреса строки), затем, через некоторое время - адрес столбца, сопровождаемый сигналом CAS (Column Address Strobe - строб адреса столбца). При каждом обращении к ячейке регенерируют все ячейки выбранной строки, поэтому для полной регенерации матрицы достаточно перебрать адреса строк. Ячейки динамической памяти имеют большее время срабатывания (десятки- сотни наносекунд), но большую удельную плотность (порядка десятков Мбит на корпус) и меньшее энергопотребление. Динамическая память используется в качестве основной.

Обычные виды SRAM и DRAM называют также асинхронными, потому что установка адреса, подача управляющих сигналов и чтение/запись данных могут выполняться в произвольные моменты времени - необходимо только соблюдение временных соотношений между этими сигналами. В эти временные соотношения включены так называемые охранные интервалы, необходимые для стабилизации сигналов, которые не позволяют достичь теоретически возможного быстродействия памяти. Существуют также синхронные виды памяти, получающие внешний синхросигнал, к импульсам которого жестко привязаны моменты подачи адресов и обмена данными; помимо экономии времени на охранных интервалах, они позволяют более полно использовать внутреннюю конвейеризацию и блочный доступ.

FPM DRAM (Fast Page Mode DRAM - динамическая память с быстрым страничным доступом) активно используется в последние несколько лет. Память со страничным доступом отличается от обычной динамической памяти тем, что после выбора строки матрицы и удержании RAS допускает многократную установку адреса столбца, стробируемого CAS, и также быструю регенерацию по схем.е "CAS прежде RAS". Первое позволяет ускорить блочные передачи, когда весь блок данных или его часть находятся внутри одной строки матрицы, называемой в этой системе страницей, а второе - снизить накладные расходы на регенерагщю памяти.

ED0 (Entended Data Out - расширенное время удержания данных на выходе) фактически представляют собой обычные микросхемы FРМ, на выходе которых установлены регистры-защелки данных. При страничном обмене такие микросхемы работают в режиме простого конвейера: удерживают на выходах данных содержимое последней выбранной ячейки, в то время как на их входы уже подается адрес следующей выбираемой ячейки. Это позволяет примерно на 15% по сравнению с FPM ускорить процесс считывания последовательных массивов данных. При случайной адресации такая память ничем не отличается от обычной.

BEDO (Burst EDO - EDO с блочным доступом) - память на основе EDO, работающая не одиночными, а пакетными циклами чтения/записи. Современные процессоры, благодаря внутреннему и внешнему кэшированию команд и данных, обмениваются с основной памятью преимущественно блоками слов максимальной ширины. В случае памяти BEDO отпадает необходимость постоянной подачи последовательных адресов на входы микросхем с соблюдением необходимых временных задержек - достаточно стробировать переход к очередному слову отдельным сигналом.

SDRAM (Synchronous DRAM - синхронная динамическая память) -память с синхронным доступом, работающая быстрее обычной асинхронной (EPM/EDO/BEDO). Помимо синхронного метода доступа, SDRAM использует внутреннее разделение массива памяти на два независимых банка, что позволяет совмещать выборку из одного банка с установкой адреса в другом банке. SDRAM также поддерживает блочный обмен. Основная выгода от использования SDRAM состоит в поддержке последовательного доступа в синхронном режиме, где не требуется дополнительных тактов ожидания. При случайном доступе SDRAM работает практически с той же скоростью, что и FPM/EDO.

PB SRAM (Pipelined Burst SRAM - статическая память с блочным конвейерным, доступом) - разновидность синхронных SRAM с внутренней конвейеризацией, за счет которой примерно вдвое повышается скорость обмена опоками данных.

Микросхемы памяти имеют четыре основные характеристики - тип, объем, структуру и время доступа. Тип обозначает статическую или динамическую память, объем показывает общую емкость микросхемы, а структура - количество ячеек памяти и разрядность каждой ячейки. Например, 28/32- выводные DIP- микросхемы SRAM имеют восьмиразрядную структуру (8k*8, 16k*8, 32k*8, 64k*8, 128k*8), и кэш для 486 объемом 256 кб будет состоять из восьми микросхем 32k*S или четырех микросхем 64k*8 (речь идет об области данных дополнительные микросхемы для хранения признаков (tag) могут иметь другую структуру). Две микросхемы по 128k*8 поставить уже нельзя, так как нужна 32- разрядная шина данных, что могут дать только четыре параллельных микросхемы. Распространенные РB SRAM в 100-выводных корпусах PQFP имеют 32-разрядную структуру 32k*32 или 64k*32 и используются по две или по четыре в платах для Pentuim.

Аналогично, 30-контактные SIMM имеют 8-разрядную структуру и ставятся с процессорами 286, 386SX и 486SLC по два, а с 386DX, 486DLC и обычными 486 - по четыре. 72-контактные SIMM имеют 32-разрядную структуру и могут ставиться с 486 по одному, а с Pentium и Pentium Pro -по два. 168- контактные DIMM имеют 64- разрядную структуры и ставятся в Pentium и Pentium Pro no одному. Установка модулей памяти или микросхем кэша в количестве больше минимального позволяет некоторым платам ускорить работу с ними, используя принцип /расслоения (Interleave - чередование).

Время доступа характеризует скорость работы микросхемы и обычно указывается в наносекундах через тире в конце наименования. На более медленных динамических микросхемах могут указываться только первые цифры (-7 вместо -70, -15 вместо -150), на более быстрых статических "-15" или "-20" обозначают реальное время доступа к ячейке. Часто на микросхемах указывается минимальное из всех возможных времен доступа - например, распространена маркировка 70 нс EDO DRAM, как 50, или 60 нс - как 45, хотя такой цикл достижим только в блочном. режиме, а в одиночном режиме микросхема по-прежнему срабатывает за 70 или 60 не. Аналогичная ситуация имеет место в маркировке РВ SRAM: 6 нс вместо 12, и 7 - вместо 15. Микросхемы SDRAM обычно маркируются временем доступа в блочном режиме (10 или 12 нс).

Тип модуля памяти DIP (Dual In line Package - корпус с двумя рядами выводов) - классические микросхемы, применявшиеся в блоках основной памяти XT и ранних AT, a сейчас - в блоках кэш-памяти. SIP (Single In line Package - корпус с одним рядом выводов) - микросхема с одним рядом выводов, устанавливаемая вертикально. SIPP (Single In line Pinned Package - модуль с одним рядом проволочных выводов) - модуль памяти, вставляемый в панель наподобие микросхем DIP/SIP; применялся в ранних А Т.

SIMM (Single In line Memory Module - модуль памяти с одним рядом контактов) - модуль памяти, вставляемый в зажимающий разъем; применяется во всех современных платах, а также во многих адаптерах, принтерах и прочих устройствах. SIMM имеет контакты с двух сторон модуля, но все они соединены между собой, образуя как бы один ряд контактов.

DIMM (Dual In line Memory Module - модуль памяти с двумя рядами контактов) - модуль памяти, похожий на SIMM, но с раздельными контактами (обычно 2 х 84), за счет чего увеличивается разрядность или число банков памяти в модуле. Применяется в основном в компьютерах Apple ч новых платах Р5 и Р6.

На SIMM в настоящее время устанавливаются преимущественно микросхемы FPM/EDO/BEDO, а на DIMM - EDO/BEDO/SDRAM.

СELP (Card Egde Low Profile - невысокая карта с ножевым разъемом на краю) - модуль внешней кэш-памяти, собранный на микросхемах SRAM (асинхронный) или РВ SRAM (синхронный). По внешнему виду похож на 72-контактный SIMM, имеет емкость 256 или 512 кб. Другое название -COAST (Cache On A Stick - буквально "кэш на палочке").

Модули динамической памяти, помимо памяти для данных, могут. иметь дополнительную память для хранения битов четности (Parity) для байтов данных - такие SIMM иногда называют 9- и 36- разрядными модулями (по одному биту четности на байт данных). Биты четности служат ()л.я контроля правильности считывания данных из модуля, позволяя обнаружить часть ошибок (но не все ошибки). Модули с четностью имеет смысл применять лишь там, где нуж,на очень высокая надежность - для обычных применений подходят и тщательно проверенные модули без четности, при условии, что системная плата поддерживает такие типы модулей.

Проще всего определить тип модуля по маркировке и количеству микросхем памяти на нем: например, если на 30-контактном SIMM две микросхемы одного типа и одна - другого, то две первых содержат (данные (каждая - по четыре разряда), а третья - биты четности (она одноразрядная). В 72- контактном SIMM с двенадцатью микросхемами восемь из них хранят данные, а четыре - биты четности. Модули с количеством микросхем 2, 4 или 8 не имеют памяти под четность.

Иногда на модули ставится так называемый имитатор четности -микросхема- сумматор, выдающая при считывании ячейки всегда правильный бит четности. В основном это предназначено для установки таких модулей в платы, где проверка четности не отключается; однако, cyщecmвyюm модули, где такой сумматор маркирован как "честная" микросхема памяти.

72-контактные SIMM имеют четыре специальных линии PD (Presence Deled - обнаружение наличия), на которых при помощи перемычек может быть установлено до 16 комбинаций сигналов. Линии PD используются некоторыми "Brand name"- платами для определения наличия модулей в разъемах и их параметров (объеми и быстродействия). Большинство универсальных плат производства "третьих фирм", как их выпускаемые ими SIMM, не используют линий PD.

В модулях DIMM, в соответствии со спецификацией JEDEC, технология PD реализуется при помощи перезаписываемого ПЗУ с последовательным доступом (Serial EEPROM) и носит название Serial Presence Detect (SPD). ПЗУ представляет собой 8- выводную микросхему, размещенную в углу платы DIMM, а его содержимое описывает конфигурацию и параметры модуля. Системные платы с чипсетами 440LХ/ВХ могут использовать SPD для настройки системы управления памятью. Некоторые системные платы могут обходиться без SPD, определяя конфигурацию модулей обычным путем - это стимулирует выпуск рядом производителей DIMM без ПЗУ, не удовлетворяющих спецификации JEDEC.

 

Для расширения операционных возможностей и увеличения производительности процессора применяются различные способы адресации информации, отличающиеся порядком использования и обработки адресного поля в команде, посредством которого организуется доступ к информации, хранящейся в оперативной памяти (или в ПЗУ) ЭВМ.

Рассмотрим способы адресации операндов и команд.

 



<== предыдущая лекция | следующая лекция ==>
Организация кэш-памяти | Косвенная адресация с использованием оперативной памяти


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.214 сек.