русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Микроархитектура процессора AMD Athlon


Дата добавления: 2013-12-24; просмотров: 810; Нарушение авторских прав


Рис. 4.16.

Микроархитектура процессора AMD-K6-2


Два декодера Short Decoder #1 и Short Decoder #2 работают параллельно и обрабатывают наиболее часто используемые х86-инструкций — move, shift, branch, ALU, FPU, а также инструкции из наборов команд ММХ и 3DNow! Декодеры Short Decoder #1 и Short Decoder #2 обрабатывают только часто используемые (most commonly-used) х86-инструкций длиной не более семи байт- Каждый может преобразовать только одну такую х86-инструкцию и сгенерировать 0 (например, при обработке х86-инструкций NOP), одну или две RISC86-инструкции за такт. Таким образом, за один такт оба декодера могут сгенерировать до 4 РISC86-инструкций.

Редко используемые инструкции (semi-commonly-used) длиной до семи байт и обычные инструкции (commonly-used) с длиной большей семи байт, но меньшей или равной 11 байтам обрабатываются декодером Long Decoder, который может декодировать только одну такую х86-инструкцию и сгенерировать до 4 RISC86-инструкций за такт. Все остальные преобразования (более сложные инструкции, прерывания, и. т. д.) выполняются декодером Vector Decoder. В этом случае Vector Decoder генерирует набор первых RISC86-инструкции и адрес заранее предопределенного набора последующих инструкций, который хранится в ROM-памяти (On-Chip ROM) и извлекается блоком RISC86 Sequencer.

Все наборы RISC86-операций, генерируемые декодерами и извлекаемые из On-Chip ROM всегда (!) состоят из групп, содержащих по четыре RISC86-операции. В том случае, если их получилось меньше, недостающее количество заполняется пустыми RISC86-инструкциями NOP. Например, если Long Decoder преобразовал х86-инструкцию в три RISC86-инструкции, то к ней добавляется одна RISC86-инструкция NOP. Получившийся лоток из таких групп поступает в буфер планировщика (Scheduler Buffer) — за один такт всегда передается группа из четырех RISC-операций. Центральный планировщик (Centralized RISC86 Operation Scheduler). Планировщик — это сердце процессора AMD-K6-2. Он следит за процессом исполнения RISK86-инструкций, приведением результата их исполнения к х86-архитектуре, а также возвращением результатов спекулятивного выполнения х86-инструкций в соответствии с их порядком поступления на вход процессора.



В буфере планировщика может одновременно содержаться до 24 RISC86-инструкций. Любая из них может быть в любой момент передана на исполнение соответствующему вычислительному блоку (store, load, branch, register X integer/multimedia, register Y integer/multimedia, floating-point), если, конечно, последний свободен. Таким образом, реализуется исполнение инструкций в порядке, отличном от порядка их поступления в буфер (out-of-order execution). В общей сложности планировщик может передать на выполнение шесть и завершить (retire) также шесть RISC86-инструкций за такт, Вычислительные блоки (Execution Units). Процессор AMD-K6-2 содержит 30 параллельных вычислительных блоков — Store Unit, Load Unit, Integer X ALU, Integer Y ALU, MMX ALU (X), MMX ALU (Y), MMX/3DNow! Multiplier, 3DNow! ALU, FPU и Branch Unit. Каждый блок работает независимо от остальных, так что несколько блоков могут обрабатывать переданные им на исполнение RISC86-инструкции.

 

 

 


System Interfase L2 SRAM

 



<== предыдущая лекция | следующая лекция ==>
Микроархитектура процессоров семейства AMD | Организация системной шины


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.663 сек.