русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Теорема о почленном дифференцировании.


Дата добавления: 2013-12-24; просмотров: 1819; Нарушение авторских прав


Теорема о почленном интегрировании.

Теорема о почленном переходе к пределу.

 

Пусть ряд равномерно сходится к S(x) в V, тогда

Тогда ряд (ряд из cn сходится к ).

(без доказательства).

 

Заметим, что суть теоремы содержится в формуле.

, что и оправдывает название теоремы.

 

 

Пусть непрерывны в V, пусть ряд равномерно сходится в V. Тогда ряд , то есть функциональный ряд можно почленно интегрировать.

 

Заметим, что суть теоремы содержится в формуле

 

Доказательство. Так как ряд равномерно сходится в V, то его сумма S(x) непрерывна (теорема о непрерывности суммы ряда) и

Так как непрерывны, то . Составим ряд , покажем, что он сходится к Обозначим частичную сумму

Так как ряд равномерно сходится в V, то .

Оценим .

 

Пусть непрерывны в V. Пусть ряд сходится в V, а ряд

.равномерно сходится в V. Тогда ряд можно почленно дифференцировать, причем (= .

 

Доказательство. Так как ряд сходится равномерно, то его сумма - непрерывная функция (теорема о непрерывности суммы ряда). Ее можно интегрировать, применяя теорему о почленном интегрировании.

Дифференцируя, получим , то есть .



<== предыдущая лекция | следующая лекция ==>
Теорема о непрерывности суммы ряда. | Радиус сходимости и интервал сходимости степенного ряда.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.142 сек.