русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Теорема о непрерывности суммы ряда.


Дата добавления: 2013-12-24; просмотров: 2603; Нарушение авторских прав


Свойства равномерно сходящихся функциональных рядов.

Признак Вейерштрасса равномерной сходимости ряда.

 

Пусть члены функционального ряда можно мажорировать (ограничить по модулю) в области V членами сходящегося числового знакоположительного ряда, .

Тогда функциональный ряд равномерно сходится в области V.

Доказательство. Так как числовой ряд сходится, то для него выполнен критерий Коши (ряд знакоположителен, ).

Тогда

.

Следовательно, выполнен критерий Коши равномерной сходимости ряда, и ряд сходится в области V равномерно.

 

Пример. Ряд сходится равномерно в R, так как - сходящийся числовой ряд.

 

Пусть члены функционального ряда - непрерывные функции в точке - внутренней точке области V. Пусть ряд сходится равномерно в области V. Тогда сумма функционального ряда – непрерывная функция в точке .

 

Доказательство. Так как ряд сходится равномерно в V, то

.

Так как - непрерывные функции в точке , то и непрерывна в как сумма конечного числа непрерывных функций.

Зафиксируем n>N. По непрерывности .

Оценим

.

Итак , то есть сумма функционального ряда – непрерывная функция в точке .



<== предыдущая лекция | следующая лекция ==>
Лекция 13. Равномерно сходящиеся ряды. | Теорема о почленном дифференцировании.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.044 сек.