русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Теоремы о структуре знакопеременных рядов.


Дата добавления: 2013-12-24; просмотров: 1785; Нарушение авторских прав


Теорема о перестановке членов в абсолютно сходящихся рядах.

Пусть ряд абсолютно сходится, тогда его члены можно переставлять, получая абсолютно сходящийся ряд с той же суммой.

 

Доказательство. Обозначим s - сумму ряда , S – сумму ряда .

Рассмотрим ряд . Он знакоположительный, так как . Он сходится по первому признаку сравнения рядов по сравнению со знакоположительным рядом , так как . Его сумма равна s + S.

Пусть ряд получен перестановкой членов из .

Тогда знакоположительный ряд получен перестановкой членов из . По теореме Дирихле он сходится и имеет ту же сумму S.

Знакоположительный ряд получен перестановкой членов из ряда . Следовательно, по теореме Дирихле, он сходится и имеет ту же сумму S + s.

Вычитая из сходящегося ряда сходящийся ряд , мы получим ряд . По свойствам сходящихся рядов он сходится и имеет сумму, равную (S + s) – S = s.

Следовательно, ряд , полученный при перестановке членов ряда , сходится и имеет ту же сумму, что и ряд .

Ряд называется условно сходящимся, если ряд из модулей членов ряда расходится, а сам ряд сходится.

 

Обозначим - положительные члены, - отрицательные члены знакопеременного ряда. A – ряд , Am – ряд , P – ряд , Po – ряд A, в котором все отрицательные члены заменены нулями на тех же местах. Q – ряд , Qo – ряд A, в котором все положительные члены заменены нулями на тех же местах.

 

Пример

A

Am

Po

P

Qo

Q

 

ТеоремаРяды P, Po, ряды Q, Qo сходятся или расходятся одновременно.

 

Доказательство. Так как ряд знакопеременный, то два последовательных положительных члена отделяет друг от друга конечное число отрицательных членов. То же верно и для последовательных отрицательных членов. Пусть первая серия нулей в Po: Тогда , т.е. k элементов в последовательности частичных сумм повторяются. Исключим их из последовательности и перенумеруем члены (это соответствует исключению серии нулей). Исключение последовательных одинаковых элементов не влияет на сходимость и предел последовательности. Далее доказательство можно провести по индукции, так как операция исключения нулей аналогична. Поэтому ряды Po и P сходятся или расходятся одновременно. Аналогичное верно и для Qo и Q.



 

Теорема.Если P сходится, Q – сходится, то Am сходится, т.е. ряд A сходится абсолютно.

Доказательство. Так как P сходится, то Po сходится, так как Q – сходится, то Qo – сходится. Складывая сходящиеся ряды Po и (-Qo) почленно (учитывая, что ), получим сходящийся ряд. Это – ряд Am.

 

Теорема.Если P сходится и Q расходится или P расходится и Q сходится, то A расходится.

Доказательство. Рассмотрим один из вариантов. Пусть P сходится и Q расходится.

Тогда Po сходится. Будем доказывать от противного. Пусть A сходится, тогда, вычитая из него сходящийся ряд Po, получим сходящийся ряд Qo. Тогда по доказанной выше теореме ряд Q сходится. Противоречие.

Второй вариант P расходится и Q сходится рассматривается аналогично.

 

Теорема.Пусть ряд A условно сходится, тогда ряды P, Q расходятся.

Доказательство. Если P, Q оба сходятся, то по доказанной выше теореме Am сходится, т.е. ряд A сходится абсолютно. Противоречие.

Если P сходится и Q расходится или P расходится и Q сходится, то A расходится.(по доказанной выше теореме). Противоречие.

Следовательно, оба ряда P, Q расходятся.

Итак, получена следующая схема.

.

Эта схема отражает суть теорем о структуре знакопеременных рядов.

 

Пример.

P: - сходящаяся бесконечно убывающая геометрическая прогрессия.

Q: сходящаяся бесконечно убывающая геометрическая прогрессия. Следовательно, исходный ряд A абсолютно сходится.

Пример.

P: - сходящаяся бесконечно убывающая геометрическая прогрессия.

Q: расходящийся ряд (по второму признаку сравнения с гармоническим рядом). Следовательно, исходный ряд A расходится.

 



<== предыдущая лекция | следующая лекция ==>
Лекция 12. Знакопеременные ряды. | Признак Лейбница.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.04 сек.