Теорема (о полном дифференциале) для пространственной кривой.
Пусть дуга AB лежит на кусочно-гладкой поверхности S, пусть функции P(x, y, z), Q(x, y, z), R(x, y, z) непрерывны и имеют непрерывные частные производные на S. Тогда следующие четыре утверждения эквивалентны.
1)
не зависит от формы дуги (от пути интегрирования), а зависит только от начальной и конечной точек дуги.
2) Для любого замкнутого контура 

3) 
4)
.
- полный дифференциал.
Доказательство. Доказательство аналогично двумерному случаю, схема доказательства та же:
. Докажите ее самостоятельно.
проводится по теореме о смешанных производных так же как в двумерном случае.
проводится по теореме Стокса (будет сформулирована и доказана ниже).
доказательство полностью аналогично двумерному случаю.
доказательство аналогично двумерному случаю.
Замечание. Формула Ньютона-Лейбница справедлива в трехмерном случае и доказывается так же.
Криволинейный интеграл от полного дифференциала можно вычислять двумя способами.
1) Можно выбирать удобный путь интегрирования, например, состоящий из отрезков, параллельных OX и OY. На отрезке, параллельном OX, dy=0, так как y не изменяется на этом отрезке. На отрезке, параллельном OY, dx=0, так как x не изменяется на этом отрезке. Тогда
=
+
2) Можно восстановить потенциал, как это делалось на первом курсе при решении дифференциальных уравнений в полных дифференциалах и применить формулу Ньютона-Лейбница.
Пример. Вычислить интеграл
.
1)
= 
2) 
.
Сравнивая две записи потенциала, получим
.
=
.
Заметим, что аналогично вычисляется криволинейный интеграл от полного дифференциала по пространственной кривой.