русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Вычисление площади поверхности с помощью двойного интеграла.


Дата добавления: 2013-12-24; просмотров: 6052; Нарушение авторских прав


Приложения двойного интеграла.

Лекция 2. Приложения двойного интеграла.

Теорема.Пусть установлено взаимно однозначное соответствие областей Dxy и Duv с помощью непрерывных, имеющих непрерывные частные производные функций . Пусть функция f(x,y) непрерывна в области Dxy. Тогда

, где - якобиан (определитель Якоби).

Доказательство (нестрогое). Рассмотрим элементарную ячейку в координатах u, v: Q1, Q3, Q4, Q2 – прямоугольник со сторонами du, dv. Рассмотрим ее образ при отображении - ячейку P1, P3, P4, P2.

P1
y
x
P3
P4
P2
Q1
Q2
Q4
Q3
v
u

Запишем координаты точек Q1 (u, v), Q2 (u+du, v), Q3 (u, v+dv),  

 

Приближенно будем считать ячейку P3, P4, P1, P2.параллелограммом, образованным сторонами . Вычислим площадь этой ячейки как площадь параллелограмма.

.

Подставляя в интеграл площадь параллелограмма в качестве площади ячейки dxdy, получим .

Следствие. Рассмотрим частный случай – полярную систему координат : . .

Пример. Вычислить площадь внутри кардиоиды .

.

 

Пример. Вычислить объем внутри прямого кругового цилиндра , ограниченный плоскостью в первом октанте.

.

Для каждой задачи можно выбрать ту систему координат, в которой вычисления проще. Декартова система координат удобна для прямоугольных областей. Если стороны прямоугольника параллельны координатным осям, то пределы интегрирования в повторном интеграле постоянны. Полярная система координат удобна для круга, кругового сектора или сегмента. Если центр круга находится в начале координат, то пределы интегрирования по углу и радиусу постоянны.

 

 

С помощью двойного интеграла можно вычислить объем цилиндрического тела, площадь и массу плоской области. От этих задач мы и пришли к двойному интегралу.



Но возможны и менее очевидные приложения.

С помощью двойного интеграла можно вычислять площадь поверхности, определять статические моменты, моменты инерции и центр тяжести плоской области.

 

Пусть поверхность s, площадь которой надо вычислить, задана уравнением F(x, y, z) = 0 или уравнением z = f(x, y). Введем разбиение s на ячейки Dsk, не имеющие общих внутренних точек, площадью Dvk. Пусть область s и ячейки Dsk проектируются на плоскость OXY в область D и ячейки Ddk площадью Dsk. Отметим на ячейке Ddk точку Mk. В точке Qk (ячейки Dsk), которая проектируется в точку Mk, проведем единичный вектор нормали nk {cosak, cosbk, cosgk} к поверхности s и касательную плоскость. Если приближенно считать равными площадь Dvk ячейки Dsk и площадь ее проекции на касательную плоскость,

то можно считать справедливым соотношение Dvk cosgk = Dsk. Выразим отсюда

Dvk=Dsk/ cosgk. Будем измельчать разбиение при условии max diam Dsk ®0, что для кусочно-гладкой поверхности, не ортогональной плоскости OXY, равносильно max diam Ddk ®0. Вычислим площадь поверхности как двойной интеграл

.

Сюда остается лишь подставить .

Если поверхность s задана уравнением F(x, y, z) = 0, то

Поэтому в этом случае , .

 

 

.

Если поверхность задана уравнением z = f(x, y), то уравнение это можно

свести к уравнению F(x, y, z) = 0 и применить выведенную формулу:

.

Пример. Вычислить площадь поверхности конуса , ограниченной плоскостями

. .

 



<== предыдущая лекция | следующая лекция ==>
Вычисление двойного интеграла в декартовой системе координат. | Замечание о несобственных двойных интегралах.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.122 сек.