Задача о кратчайшем пути. Как кратчайшим путем попасть из одной вершины графа в другую? В терминах производственного менеджмента: как кратчайшим путем (и, следовательно, с наименьшим расходом топлива и времени, наиболее дешево) попасть из пункта А в пункт Б? Для решения этой задачи каждой дуге ориентированного графа должно быть сопоставлено число - время движения по этой дуге от начальной вершины до конечной.
Оптимизационные задачи на графах, возникающие при подготовке управленческих решений в производственном менеджменте, весьма многообразны.
Задача о максимальном потоке.Как (т.е. по каким маршрутам) послать максимально возможное количество грузов из начального пункта в конечный пункт, если пропускная способность путей между пунктами ограничена?
Для решения этой задачи каждой дуге ориентированного графа, соответствующего транспортной системе, должно быть сопоставлено число - пропускная способность этой дуги.
О многообразии оптимизационных задач.В различных проблемах принятия решений возникают самые разнообразные задачи оптимизации. Для их решения применяются те или иные методы, точные или приближенные. Задачи оптимизации часто используются в теоретико-экономических исследованиях. Например, задачи определения оптимального объема выпуска по функции издержек при фиксированной цене или минимизации издержек при заданном объеме выпуска путем выбора оптимального соотношения факторов производства.
Конкретные виды задач оптимизации и методы их решения рассматриваются в соответствующей литературе.
Регрессионный и корреляционный анализ позволяет установить и оценить зависимость изучаемой случайной величины Y от одной или нескольких других величин X, и делать прогнозы значений Y. Параметр Y, значение которого нужно предсказывать, является зависимой переменной. Параметр X, значения которого нам известны заранее и который влияет на значения Y, называется независимой переменной. Например, X – величина затрат компании на рекламу своего товара, Y – объем продаж этого товара и т.д.
Корреляционная зависимость Y от X – это функциональная зависимость вида
,
где – среднее арифметическое (условное среднее) всех возможных значений параметра Y, которые соответствуют значению . Уравнение называется уравнением регрессииY на X, функция – регрессиейY на X, а ее график – линией регрессииY на X.
Основная задача регрессионного анализа – установление формы корреляционной связи, т.е. вида функции регрессии (линейная, квадратичная, показательная и т.д.).